
flfi HEWLETT
PACKARD

Scientific Expandable

Owner’s Manual
Volume II

PURGE

DEL
LIS

HP 48SX Scientific Expandable
Calculator

Owner’s Manual

Volume Il

(fifi HEWLETT
PACKARD

Edition 4 July 1990
Reorder Number 00048-90003

Notice

For warranty and regulatory information for this calculator, see pages 673
and 676.

This manual and any examples contained herein are provided “as is” and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not

limited to, the implied warranties of merchantability and fitness for a

particular purpose. Hewlett-Packard Co.shall not be liable for any errors
or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein.

o Hewlett-Packard Co. 1990. All rights reserved. Reproduction,
adaptation,or translation of this manual is prohibited without prior
written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co.is also
prohibited.

o Trustees of Columbia University in the City of New York, 1989.
Permission is granted to any individual or institution to use, copy, or
redistribute Kermit software so long as it is not sold for profit, provided
this copyright notice is retained.

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 January 1990 Mfg. No. 00048-90004
Edition 2 April 1990 Mfg. No. 00048-90059
Edition 3 May 1990 Mfg. No. 00048-90062
Edition 4 July 1990 Mfg. No. 00048-90078

Contents

Part4: Programming

25 468
470
470
472
472
473
479
480
483
484
486

486

26 488
490
491
493
494
494
494
496
498
499
500
500

Programming Fundamentals
Entering and Executing a Program

Entering a Program
Executing a Program

Editing a Program
Using Local Variables
Programs That Manipulate Data on the Stack
Using Subroutines
Single-Step Execution of a Program

Single-Step Execution from the Start of the Program
Single-Step Execution from the Middle of
the Program

Single-Step Execution of Subroutines

Tests and Conditional Structures
Program Tests

Comparison Functions
Logical Functions
Testing Object Types

Conditional Structures

The IF.. THEN.. .END Structure

The IF.. THEN.. .ELSE.. .END Structure

The CASE...END Structure

Conditional Commands

The IFT (If-Then-End) Command
The IFTE Function

Contents 461

27

28

29

462

501
501
502
504
506
508
510
510
512
513

515
515
516
518
518
518

519
520
521
523
523
524
531
532
533
534
534
534
535
539
539
539
539
540
540

Contents

Loop Structures
Definite Loop Structures
The START.. NEXT Structure

The START.. .STEP Structure

The FOR.. NEXT Structure
The FOR...STEP Structure

Indefinite Loop Structures
The DO...UNTIL...END Structure

The WHILE. . REPEAT...END Structure

Loop Counters (INCR and DECR)

Flags
Flag Types
Setting, Clearing, and Testing Flags
Recalling and Storing the Flag States

Recalling the Flag States
Storing the Flag States

Interactive Programs
Suspending Program Execution for Data Input
The PROMPT Command
The BEEP Command
The DISP, HALT and FREEZE Commands
The INPUT Command

Labeling Program Output
Using Tagged Objects as Data Output
Using String Commands to Label Data Output
Pausing to Display Data Output

Using Menus in Programs
Displaying a Built-In Menu
Custom Menus in Programs
Building a Temporary Menu

Commands That Return a Key Location
The WAIT Command with Argument 0
The WAIT Command with Argument -1
The KEY Command

Turning the HP 48 Off from a Program

30

31

541

543
544
546

547
548
548
550
551
554
554
555
557
560
561
563
565
568
569
570
572

573

576

579
580

582
585
588
588

589
591

Error Trapping
The IFERR...THEN...END Structure

The IFERR.. .THEN...ELSE.. .END Structure

User-Defined Errors

More Programming Examples
Fibonacci Numbers
FIB1 (Fibonacci Numbers, Recursive Version)
FIB2 (Fibonacci Numbers, Loop Version)
FIBT (Comparing Program-Execution Time)

Displaying a Binary Integer
PAD (Pad with Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display)

Median ofStatistics Data
SORT(Sorta List)
LMED (Median of a List)
MEDIAN (Median ofStatistics Data)

Expanding and Collecting Completely
MULTI (Multiple Execution)
EXCO (Expand and Collect Completely)

Finding the Minimum or Maximum Element of
an Array

MNX (Finding the Minimum or Maximum Element
of an Array— Technique 1)

MNX2 (Finding the Minimum or Maximum Element
of an Array— Technique 2)

Verification of Program Arguments
NAMES (Doesthe List Contain Exactly Two
Names?)

VFY (Verify Program Argument)
Bessel Functions
Animation of Successive Taylor’s Polynomials
Drawing a Sine Curve and Converting It to a
Graphics Object

Superposition of Successive Taylor’s Polynomials
Animation of Taylor’s Polynomials

Contents 463

592
597

Programmatic Use of Statistics and Plotting
Animation of a Graphical Image

Part 5: Printing, Data Transfer, and

32

33

464

Plug-Ins

602 Printing
602 Printing with an HP 82240B Printer
604 Print Formats
605 Basic Printing Commands
606 Printing a Text String
606 Printing a Graphics Object
607 Double Space Printing
607 Setting the Delay
607 The HP 48 Character Set
608 Sending Escape Sequences and Control Codes
608 Accumulating Data in the Printer Buffer
609 Printing with an HP 82240A Infrared Printer
610 Printing to the Serial Port
611 The PRTPAR Variable

612 Transferring Data to and from the HP 48
613 Types of Data You Can Transfer
614 The I/O Menu
616 Local and Server Modes
617 Setting the I/O Parameters
617 The SETUP Menu

618 The IOPAR Variable
619 Transferring Data between Two HP 48’s
621 Transferring Data between a Computer and the HP 48
621 Cable Connection
622 Transferring Data
624 Backing Up All of HP 48 Memory
626 Character Translations (TRANSIO)
628 More About File Names
629 Errors

629 ASCII and Binary Transmission Modes

Contents

631 Sending Commands to a Server (PKT)
632 Serial Commands

34 635 Using Plug-in Cards and Libraries
635 Types of Memory
636 Installing and Removing Plug-In Cards
639 RAM Cards
639 Preparing the Card for Installation
642 Uses for RAM Cards
643 Using RAM Cards to Expand User Memory (Merged

Memory)

644 Using RAM Cards for Backup (Independent Memory)
645 Backing Up Objects into Independent Memory
646 Accessing Backup Objects
647 Backing Up Objects into User Memory (Port 0)
648 Backing Up All of Memory
649 Freeing Merged Memory
651 Using Application Cards and Libraries
651 Attaching a Library to a Directory
652 Accessing Library Operations (The LIBRARY

Menu)

653 Additional Commands That Access Libraries

Appendixes and Indexes

A 656 Support, Batteries, and Service
656 Calculator Support
656 Answers to Common Questions
660 Environmental Limits
660 When to Replace Batteries
661 Changing Batteries
661 Battery Types
661 Changing Calculator Batteries
663 Changing a RAM Card Battery
665 Testing Calculator Operation
667 Self-Test

Contents 465

m
O

O
@

466

667
669
670
671
673
674
676

677

694

697

707

823

Contents

Keyboard Test
Port RAM Test
IR Loop-Back Test
Serial Loop-Back Test
Limited One-Year Warranty
If the Calculator Requires Service
Regulatory Information

Messages

HP 48 Character Codes

Menu Numbers

Listing of HP 48 System Flags

Operation Index

Index

Part 4

Programming

25

Programming Fundamentals

A program is an object defined by « # delimiters. A program is itself
composed of objects and commands whose execution is delayed until the
program is executed. Because a program is an object, it can be:

m Placed on the stack.

m Stored in a variable.

m Executed repeatedly.

m Executed by another program.

The following example calculates the volume of a sphere, first using
keystrokes and then using a program.

Example: Calculations with Keystrokes and with a Program.
The volumeof a sphere of radius r is calculated by:

V = %wfi

To do one calculation, you can use the following keystrokes. (Assume you
have already placed the radius on the stack.)

3] B ® 4 X3 E (@NM

468 25: Programming Fundamentals

Each time you press a command key, it is immediately executed, leaving
an intermediate result on the stack.

If you wantto calculate the volumes of many spheres, you can create a
program. The following program assumes the radius is on the stack at the
start of program execution;

£ 3~ w4 %3 -/ 3HUM »

After keying in the « »delimiters (by pressing [€][« »]), you use the
same keystrokes to enter the subsequent objects and commands as you
did before. However, the objects and commands that you type are simply
listed in the command line— their execution is delayed until you execute
the program itself.

Because the program is an object, you can place it on the stack and save it
in a variable. To place the program on the stack, press [ENTER]. To store
the program in a variable named VOL,type [] VOL [STOJ. Now you can
calculate the volume of any sphere simply by placing the radius on the
stack and executing VOL (select the VAR menu and press
can execute VOL as many times as you want;it acts like a bu
command.

VOL is a program of the simplest form;a series of objects and commands,
written in the same order as you would type them from the keyboard. In
following chapters, yow’ll learn about more advanced HP 48 programming
features:

m Conditional expressions (chapter 26).

m Looping structures (chapter 27).

m Flags (chapter 28).

m Interactive programs (chapter 29).

m Error trapping (chapter 30).

This chapter covers basic HP 48 programming concepts:

Entering and executing programs.

Editing programs.

Using local variables in programs.

Stack manipulation of data in programs.

25: Programming Fundamentals 469

m Using subroutines.

m Single-step execution of programs.

The Programmer’s Reference Manual for the HP 48 (part number 00048-
90054) contains useful programming information, including complete
syntax information for all HP 48 commands.

Entering and Executing a Program

Entering a Program

To define the beginning of a program, press (] »]. The FRG
annunciator appears, indicating Program-entry mode. In this mode,
pressing the key for any command now writes the command’s name in the
commandline. (You can also type the command nameinto the command
line with alpha characters.) Only nonprogrammable operations such as
[«]) and are executed.

The following program, SPH, calculates the volume of a spherical cap of
radius r and height A.

The volumeis calculated by V = %whz (3r - h).

470 25: Programming Fundamentals

In this and following chapters on programming, “stack diagrams” are used
as appropriate to show what arguments must be on the stack before a
program is executed and what results the program leaves on the stack.
Here is the stack diagram for SPH.

Arguments Results

2t

1: volume[

The diagram indicates that SPH takes no arguments from the stack and
returns the volume of the spherical cap to level 1. (SPH assumes that you
have stored the numerical value for the radius in variable R and the
numerical value for the height in variable H.)

Program listings are shown with program stepsin the left column and
associated commentsin the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Program: Keys: Comments:

% Q)] Begins the program.

"1/3 D138 Begins the algebraic expression to
calculate the volume.

#WEH2 x 9] Multiplies by 7h2.
XJH2

#(3*R-H>" x])] Multiplies by 3r — h, completing
3x]R[E) the calculation and ending the
H]) expression.

+HUM (][=NUM] Converts 7 to a number.

¥ Ends the program.

Puts the program on the stack.

[] SPH Stores the program in variable
SPH.

25: Programming Fundamentals 471

Executing a Program

There are several ways to execute SPH:

® Type SPH in the command line, then press [ENTER].

m Select the VAR menu, then pres
m If the program or the program nameis alreadyin level 1, press

[EVAL].

Example: Executing a Program from the VAR Menu. Use SPH
to calculate the volumeof a spherical cap of radius » = 10 mm and height
h =3 mm.

First, store the data in the appropriate variables. Then select the VAR
menu and execute the program. The answer is returned to level 1 of the
stack.

10(JR 1: 294. 469084942
30 H CHk[Pl]||

:

Editing a Program

Follow the same rules to edit a program as you do to edit any other object
(see “Displaying Objects For Viewing or Editing” on page 66).

Example: Editing a Program. Edit SPH so that it stores the number
in level 1 into variable H and the numberin level 2 into variable R.

Use the VAR menu and to call SPH to the command line for
editing.

4 '1/3#yxH"2%(3*R-H
) aNUM
2

TATTN(NIOT

 [e»]vVISIT

Move the cursor past the first program delimiter and insert the new
program steps.

) 0 H) 5T0) «'H' STO 'R' STO +1-3..
0R® 519)" NI

472 25: Programming Fundamentals

Save the edited version of SPH in the variable. To verify that the changes
were saved, recall SPH to the command line.

« 'H' STO 'R' STO !
1/3%w+H"2%(3*R-H) '
»NUM
»
LTTT(eDT

No further changes need to be made, so press [ATTN] to abort the editing
session or [ENTER] to resave the program.

(] [VISIT

The edited version of SPH now takes two arguments from the stack, the
height from level 1 and the radius from level2.

Using Local Variables

The program SPH in the previous section uses global variables for data
storage and recall. There are disadvantages to using global variables in
programs:

m After program execution, global variables that you no longer need to

use must be purged if you wantto clear the VAR menu and free user
memory.

m You must explicitly store data in globalvariables prior to program
execution, or have the program execute STO.

In this section, youw’ll see how local variables address the disadvantages of
global variables in programs. Local variables are temporary variables
created by a program. They exist only while the program is being executed
and cannot be used outside the program. They never appear in the VAR
menu.

To create local variables, you must use the following sequence of
command and objects, called a local variable structure:

1. The — command (press [*][=]).

2. One or more variable names.

3. A procedure (an algebraic expression or a program) that includes
the names. This procedure is called the defining procedure.

25: Programming Fundamentals 473

The structure looks like this:

% +name; name, ...name, «program x %

or

% + name; name, ...name, 'algebraic expression'

When the — commandis executed in a program, n values are taken from
the stack and assigned to variables name,, name,, ... name, . For
example,if the stack contains:

{ HOME }

4:

3 18

‘ 28
CHEAATRES

then:

® + 3 creates local variable @ = 20.

® + 3 b creates local variablesa = 6 and b = 20.

® + a b c creates local variables @ = 10,b = 6, and ¢ = 20.

The defining procedure then uses the local variables to do calculations.

(By convention,this manual uses lowercase names for local variables.)

The following program SPHLV calculates the volume of a spherical cap
using local variables. The defining procedure is an algebraic expression.

Arguments Results

M
—

r
h

474 25: Programming Fundamentals

Program: Comments:

%

+r h Creates local variables r and h for
the radius of the sphere and height
of the cap.

'1/3%msh2% (2%r—h2' Expresses the defining procedure. In
this program, the defining procedure
for the local variable structure is an
algebraic expression.

+HLUM Converts 7 to a number.

#

(] SPHLV Stores the program in variable
SPHLYV.

Example: Executing a Program That Uses Local Variables.
Use SPHLVto calculate the volume of a spherical cap of radius 7 = 10
mm and height 4 = 3 mm.

Place the data on the stack in the correct order, then select the VAR
menu and execute the program.

10 3 1: 294. 469004942

; TONN

The preceding program and example demonstrate the advantages of local
variable structures:

m The — command stores the value(s) from the stack in the
corresponding variable(s) —you do not need to explicitly execute
STO.

m Local variables automatically disappear when the defining procedure
for which they are created has completed execution. Consequently,
local variables do not appear in the VAR menu and occupy user
memory only during program execution.

m Local variables exist only within their defining procedure— different
local variable structures can use the same variable names without

conflict.

25: Programming Fundamentals 475

Evaluation of Local Names. Local names are evaluated differently
than global names. When a global name is evaluated, the object stored in
the corresponding variable is itself evaluated. (You’ve seen how programs
stored in global variables are automatically evaluated when the name is
evaluated.)

When a local name is evaluated, the object stored in the corresponding
variable is returned to the stack butis not evaluated. When a local
variable contains a number,the effectis identical to evaluation of a global
name, since putting a number on the stack is equivalent to evaluating it.
However, if a local variable contains a program, algebraic expression, or
global variable name, that object must be explicitly evaluated (by executing
EVAL) afterit is returned to the stack.

Scope of Local Variables. Local variables exist only in the procedure
for which they are defined. The following sample program illustrates the
availability of local variables in nested defining procedures (procedures
within procedures).

Program: Comments:

% Starts the outer program.

eas e For these arbitrary program steps,
no local variables are available.

+abc Creates local variables a, b, and c.

% Starts the defining procedure (a
program) for local variables a, b, and
c. This procedure is nested in the
outer program. Local variables a, b,
and ¢ are available in this procedure.

ab+c+

+de f Defines local variablesd, e, andf.

' Starts the defining procedure (an
algebraic expression) for local
variablesd, e, andf. This procedure
is nested in the defining procedure
for local variables a, b, and ¢. Local

variables a, b, ¢, d, e, andf are

476 25: Programming Fundamentals

as{dee+{f)
w N ~ |

3

available in this procedure.

Ends the defining procedure for
local variablesd,e, f. Local variables
d, e, andf no longer exist.

Local variables a, b, and ¢ remain

available.

Ends the defining procedure for
local variables a, b, and c. Local
variables a, b, and ¢ no longer exist.

For these arbitrary program steps,
no local variables are available.

Ends the outer program.

Since local variables a, b, and ¢ already exist when the defining procedure
for local variables d,e, andf is executed, they are available for use in that
procedure. However, suppose that the defining procedure for local
variables d, e, andf calls a program that you previously created and stored
in global variable P1.

Program:

k4

Fl+as{d%e+fd

Comments:

Defines local variables d,e, and f.

Starts the defining procedure for
local variables d, e, andf.

The defining procedure executes the
program stored in variable PI.

25: Programming Fundamentals 477

' Ends the defining procedure for
local variables d, e, andf.

Thesix local variables are not available in program PI because they did
not exist when you created P1. The objects stored in the local variables
are available to program PI only if you put those objects on the stack as
arguments for Por store those objects in global variables.

Conversely, program P1 can create its own local variable structure with
local variables a, c, andf, for example, without conflicting with the local
variables of the same namein the procedure that calls P1.

Programs That Act Like User-Defined Functions. In this chapter
you've learned that the defining procedure for a local variable structure
can be either an algebraic expression or a program. In chapter 10, you
learned that a user-defined function is a program that consists solely of a
local variable structure whose defining procedure is an algebraic
expression.

A program that begins with a local variable structure whose defining

procedure is a program actslike a user-defined function in two ways: It
takes numeric or symbolic arguments, and takes those arguments either
from the stack or in algebraic syntax. However,it does not have a
derivative. (The defining program must, like algebraic defining
procedures, return only one result to the stack.)

The advantage of using a program as the defining procedure for a local
variable structure is that a program can contain commands not allowed in
algebraic expressions. For example, the loop structures described in
chapter 27 are not allowed in algebraic expressions. The program BER in
chapter 31 calculates a Bessel function approximation to 12-digit accuracy.
BER uses a local variable structure whose defining procedure is an RPN
program that contains a FOR. . .STEP structure and a nested
IF...THEN...ELSE...END structure. BER is not differentiable, but the
example in chapter 31 demonstrates that it can take its arguments either
from the stack or in algebraic syntax.

478 25: Programming Fundamentals

Programs That Manipulate Data on the Stack

The programs SPH (page 471) and SPHLV (page 475) in this chapter use
variables for data storage and recall. An alternative programming method
manipulates numbers on the stack withoutstoring them in variables. This
method usually results in faster program execution time. There are several
disadvantages of the stack manipulation method:

® As you write a program, the location of the data on the stack must be
tracked. For example, data arguments must be duplicated if used by
more than one command.

® A program that manipulates data on the stack is generally harder to
read and understand than a program that uses variables.

The following program SPHSTACK uses the stack-manipulation method
to calculate the volume of spherical cap. (SPH and SPHLV execute the
same calculation.)

Arguments Results

2:r =Y

1: h 1: volume

Program: Comments:

%

DUP Makes a copy of the numberin level
1 (the height).

ROT Rotates the number now in level 3
(the radius) to level 1.

3 % Multiplies the radius by 3.

SWAFP - Swaps the heightinto level 1 and
subtracts, calculating 3r — h.

25: Programming Fundamentals 479

SHAP 5@ * Swaps the copy of the height intoPy
level 1, squares it, and multiplies by
3r - h.

T ¥ 3 7 Multiplies by x and divides by 3,
completing the calculation.

FHUM Converts « to a number.

#

[] SPHSTACK Puts the program on the stack, then
stores it in SPHSTACK.

Using Subroutines

Remember that a program is composed of objects and commandsthat are
executed when the program is executed. Because a program is itself an
object, it can be used by another program. When program B is used by
program A, programA calls program B, and program B is a subroutine in

program A.

This section introduces two programsto illustrate the use of subroutines.
The first program, TORSA, calculates the surface area of a torus of inner
radius @ and outer radius b. TORSA is used as subroutine in the second
program.

The surface area is calculated by:

A =72(b? - a?)

480 25: Programming Fundamentals

Hereis the stack diagram and program listing for TORSA.

Arguments Results

2:a =H

1: b 1: area

Program: Comments:

&

+ ab Creates local variables a and b.

'nr2#(bt2-a"2)! Expresses the defining procedure for
the local variable structure.

+HUM Converts 7 to a number.

%

Puts the program on the stack.

[] TORSA Stores the program in TORSA.

Program TORSVcalculates the volume of a torus. It calls TORSA to
execute part of the calculation.

The formula for the volume of a torusis:

1 > 2V=Z1r (a +b)(b -a)

This equation can be rewritten as:

1 2.2 2V=Z7r (b*-a*)(b -a)

The quantity 72 (b? - @*) in this equationis the surface area of a torus
and can be calculated by executing TORSA.

25: Programming Fundamentals 481

Here is a stack diagram for TORSV.

Arguments Results

2: a =Y

1: b 1: volume

Program: Comments:

%

+ ab Creates local variables a and b.

& Starts the defining procedure (a
program) for the local variable
structure.

a b TORSA Puts the numbers stored in @ and b
on the stack as arguments for
TORSA, then call TORSA to
calculate the area 7(b? - 4?).

ba- %4~ Completes the volume calculation.

¥ Ends the defining procedure.

» Ends the program.

Puts the program on the stack.

[J] TORSV Stores the program in TORSV.

TORSYVcalls program TORSA to execute part of the volume calculation.
TORSA is a subroutine in TORSV. In turn, another program can call
TORSYV.

Example: Executing a Program That Uses a Subroutine. Use
TORSYVto calculate the volume of a torus of inner radius @ = 6 inches

and outer radius b = 8 inches.

Place the data on the stack according to the stack diagram. Select the
VAR menu and execute the program.

6 (ENTER] 8 1: 138. 174461616
[Toksv[ToRsR[SPHLY]Wk[SPH

482 25: Programming Fundamentals

Single-Step Execution of a Program

It’s easier to understand how a program works if you execute it step by
step, observing the effect of each step. Doing this can help you “debug”
your own programs or understand programs written by others.

The operationsfor single-stepping through a program are contained in
the PRG CTRL menu.

Single-Step Operations

Keys Programmable Description
Command

[« CONT Resumes execution of a halted
program.

Takes as its argument the program or
program name in level 1. Starts
program execution, then suspendsit
as if HALT were the first program
command.

Executes the next object or command
in the suspended program.

Same as - except when the
next program step is a subroutine.
When the next step is a subroutine,
single-stepsto the first step in that
subroutine.

25: Programming Fundamentals 483

Single-Step Operations (continued)

Keys Programmable Description
Command

Displays the next one or two objects,
but does not execute them.

HALT Suspends program execution at the
location of the HALT command in the
program.

KILL Cancels all suspended programs.

Single-Step Execution from the Start of the
Program

In many cases, you want to begin single-step execution at the beginning of
a program. The general procedure is:

1. Put the program or program name in the command line orlevel 1.

2. Press [PRG] rogram execution is started, then
suspended before execution ofthefirst object or command. The
HALT annunciator is displayed in the status area.

3. Optional: Press o display in the status area, but not
execute, the next one or two program steps. The display persists
until the next keystroke.

4. Press : 88T once to see the first program step displayed in the
status area and then executed.

5. You can now:

m Keep pressin to display and execute sequential steps.p P g p

m Press at any time to display but not execute the next
one or two program steps.

m Press [4)(CONT] to continue normal execution.

m Press

to abandon further program execution.

484 25: Programming Fundamentals

Example: Single-Step Program Execution. Execute program
TORSV step by step. Use the torus from the previous example (@ = 6
inches, b = 8 inches).

Select the VAR menu and enter the data. Return the program name to
the command line. Select the PRG CTRL menu and execute
The HALT annunciator turns on, indicating that program execution has
been started, then suspended.

{ HOME } HALT
6 [ENTER] 8 [ENTER -

(10 3:

2t 6
1: 8
T

Execute

then executed.

. The first program step is displayed in the status area,

+ i1} o

E
T
W
@
fi

T EILL
You can see thatthe first program step took the two arguments from the
stack and stored them in local variables a and b.

Refer to the rules at the beginning ofthis section. You've executed the
first four steps and can now choose one of the four alternatives described
in step 5. For this example, continue single-step execution until the HALT
annunciator disappears. Watch the stack and status area as you single-step
through the program.

 1: 138. 174461616
(D65[[55T4 [NEST[HALTTKILL

25: Programming Fundamentals 485

Single-Step Execution from the Middle of the
Program

You may wantto start single-step execution at some point in the program
other than the first step. To do so:

1. Insert the HALT command in the program. Place it where you want
to begin single-step execution.

2. Execute the program. When the HALT command is executed, the
program stops and the HALT annunciator is displayed.

3. Follow steps 3—5 on page 484.

4. When you want the program to run normally again, remove the
HALT command from the program.

Single-Step Execution of Subroutines

se
executes the next step in a program. If the next step is a

subroutine, [executes that subroutine in one step. In the previous

example, you used o execute subroutine TORSA in one step.
However, you may want to single-step through a subroutine, executing
each individual step rather than the program as a whole. To do so, use the

_operation. works just like
next program step is a subroutine. In this case,
the first step in the subroutine.

Example: Single-Step Execution of a Subroutine. Execute
program TORSVstep by step to calculate the volume of a torus of radii a
= 10 inches and b = 20 inches. When you reach subroutine TORSA,
execute it step by step.

Select the VAR menu and key in the data. Return the program name to
the command line, select the PRG CTRL menu, and execute DBUG.

Execute the first four steps of the program, then check the next step.

10 120 .

18
12

[DEUG53T[55T4[NERT[HALT[KILL

42
3
]
1:4times

486 25: Programming Fundamentals

 The next step is TORSA. If you now execute |8
executed. Since you want to single-step through TORSA, execute .
Then verify that you are now at the first step of TORSA, notthe next step
of TORSV.

18
12

R

q.

3
¢
1
[ETE s D

R
g

Execute

epeatedly to single step through the
remainder of the program, or at any time, press (€3] [CONT] to resume
program execution.

25: Programming Fundamentals 487

26

Tests and Conditional Structures

This chapter describes commands and program structuresthat, used
together, let programs ask questions and make decisions:

m Comparison functions and logicalfunctions let a program test whether
or not a specified condition exists.

m Program structures called conditional structures use test results to

make decisions.

Example: Tests and Conditional Structures. The program in this
example uses a test inside a conditional structure to execute the following
task:

“If the two numbers on the stack have the same value, drop one of the
numbersfrom the stack and store the other in variable V1. If, however, the
numbers are not equal, store the numberfrom level 1in V1 and the number

from level 2 in V2.”

488 26: Tests and Conditional Structures

Program:

@«

Lur2

IF

SAME

THEH

DEOP
Tyt

ELSE

llvlll

||.'.12I

EHD

*

[ENTER]) (J TST [STOJ

STO

STO

STO

Comments:

Starts the program.

Copies the numbers in levels 1 and 2.

Startsthe test clause of the

conditional structure.

Tests if the numbers have the same

value.

Ends the test clause and starts the
true clause of the conditional

structure. The true clause is executed

only if the testis true.

If the test is true (if the numbers are
the same), then drops one of the
numbers from the stack and stores
the remaining numberin V1.

Starts the false clause of the
conditionalstructure. The false
clause is executed only if the test is
false.

If the testis false, (if the numbers
are not the same), then stores the
level 1 number in V1 and the level 2
numberin V2.

Ends the conditional structure.

Ends the program.

Puts the program on the stack and
stores it in 7ST.

26: Tests and Conditional Structures 489

Enter the numbers 26 and 52, then execute TST to compare their values.

26 52 |TDLTRT|

Since the two number were not equal, the VAR menu now contains two
new variables V1 and V2. You can verify that the variables contain the
numbers you entered by pressing both menu keys.

Program Tests

A test is an algebraic or a command sequence that returnsa test resuit to
the stack. A test result is either a 1 —which means the test was true, or a

& —which means the test wasfalse. For example, 'X<%' is atest. The
same test could be executed as a command sequence: * ¥ <. In either
case, ifX contains 5 and Y contains 10, then the test is true, and 1 is

returned to the stack. Conditional structures (discussed later in the
chapter) use a test result to determine which clause ofthe structure to
execute.

The commands used in tests can be categorized as follows:

u Comparison functions.

m Logicalfunctions.

m Flag-testing commands. Flags and flag testing commands are
discussed in chapter 28, “Flags.”

These commands are located in the PRG TEST menu (press

HESD).

490 26: Tests and Conditional Structures

Comparison Functions

Comparison functions compare two objects.

Comparison Functions

Keys Programmable Description
Command

pages 1 and 2):

< Less than.

> Greater than.

< Less than or equal to.

> Greater than or equalto.

== Tests equality of two objects. For
algebraics or names, returns an
expression that can be evaluated to
produce a test result based on
numerical values.

Not equal. Like = =, but returns the
opposite test result.

SAME Like = =, but does not allow a

comparison between the numerical
value of an algebraic (or name) and a
number.

<, >, < and > compare two real numbers, two binary integers, or two
strings returning 1 (true) or @ (false) based on the comparison. The
order of the comparison is level 2 test level 1, where testis the
comparison function. For example,if 6 is stored in X, ¥ 5 < removes £
and S from the stack and returns &. If one objectis an algebraic (or
name) and the other objectis an algebraic (or name) or a number, <, >,
<, and > return an expression that must be evaluated to return a test

result. For strings, “less than” means alphabetically previous. For
example, "AAA" is less than "AARE".

26: Tests and Conditional Structures 491

= = takes two objects from the stack and:

m If either object is not an algebraic or a name, returns 1 if the two
objects are the same type and have the same value, or @ otherwise.
Lists and programs are considered to have the same value if the
objects they contain are identical.

m If one objectis an algebraic (or name) and the other object is an
algebraic (or name) or a number,returns an expression that must be
evaluated to return a test result.

(Note that = = is used for comparisons, while = separates two sides of an
equation.)

worksjust like = =, except that the test results are opposite.

SAME returns 1 (true) if two objects identical. For example, 'X*+3' 4
ZAME returns 8 regardless ofthe value ofXbecause the algebraic
'#+3" is not identical to the real number4. Forall objecttypes other
than algebraics and names, SAME worksjust like = =.

Using Comparison Functions in Algebraics. Comparison
functions (except SAME) can be used in algebraics as infix functions. For
example, if 6 is stored in X, 'X<S5' +HUM returns 8.

492 26: Tests and Conditional Structures

Logical Functions

Logical functions return a test result based on the outcomes of two
previously executed tests. Note that these four functions interpret any
non-zero argumentas a true result.

Logical Functions

Keys Programmable Description
Command

'(page 1):

AND Returns 1 (true) if both arguments are
true.

OR Returns 1 (true) if either or both
arguments are true.

XOR Returns 1 (true) if either, but not both,
arguments are true.

NOT Returns 1 (true) if the argument is &
(false); otherwise, returns @ (false).

AND, OR,and XOR are used to combine two test results. For example, if

4isstoredinY, ¥ 2 < 5 AMD returns 1.First, ¥ & < returns 1 to
the stack. AND removes 1 and 5 from the stack, interpreting both as
true results, and returns 1 to the stack.

NOTreturns the logical inverse of a test result. For example,if 1 is stored
inX and 2isstoredinY, ¥ ¥ < HOT returns @.

Using Logical Functions in Algebraics. AND, OR, and XOR can

be used as infix functionsin algebraics. For example, '3<5 XOR 4>7'
+HUM returns 1.

NOT can be used as aprefix function in algebraics. For example, 'HOT
Z£4"' »HUM returns 8ifZ = 2.

26: Tests and Conditional Structures 493

Testing Object Types

The TYPE command ([PRG] TEZT TYFE)takes any object as its
argument and returns the numberthat identifies that object type. The
table on page 97 in chapter 4 lists the HP 48 objects and their
corresponding type number.

Conditional Structures

The HP 48 conditionalstructures let a program make a decision based on
the result of a test or tests. Conditionalstructures are built with
commands that work only when used in proper combination with each
other. These commands are contained in the PRG BRCH menu ([PRG]

The conditional structures are:

m IF...THEN...END.

m IF...THEN.. .ELSE...END.

m CASE.. END.

The IF.. .THEN. . .END Structure

IF.. THEN.. END executes a sequence of commands only if a test
evaluates to true. The syntax is:

IF test-clause THEH true-clause EHL:

The test-clause can be a command sequence (for example, A E <) or an
algebraic (for example, 'A<E"'). If the test-clause is an algebraic,it is
automatically evaluated to a number (=NUM or EVAL isn’t necessary).

Asa typing aid, press () IF to keyin:

IF

THEH

EMD

494 26: Tests and Conditional Structures

Example 1: IF...THEN...END. Both programs below test the value
in level1. If the valueis positive it is made negative. The first program
uses a command sequence as the test-clause:

%« DUP IF B8 > THEH MEG EHND *

The value on the stack must be duplicated because the > command
removes two arguments from the stack (the copy of the value made by
DUP, and 0).

The next version uses an algebraic as the test clause:

3+ x & IF 'x>8' THEM x MEG END » »

Example 2: IF...THEN...END. This program multiplies two
numbers together if both are non-zero.

Program: Comments:

%

Xy Creates local variablesx andy
containing the two numbers from the
stack.

%

IF Startsthe test-clause.

'x#d! Tests one of the numbers and leaves
a test result on the stack.

'y=@! Tests the other number, leaving
anothertest result on the stack.

AHD Tests whether both tests were true.

THEH Ends the test-clause, starts the true-

clause.

Xy ¥ If AND returns true, multiplies the
two numbers together.

26: Tests and Conditional Structures 495

EHML: Ends the true-clause.

The following program accomplishes the same task as the previous
program:

% wou % IF 'w AMD o' THEW x u # EHD » =

The test-clause ':z AMLD o' returns “true”if both numbers are non-

Zero.

How IF...THEN...END Works. IF begins the test-clause, which
leaves a test result on the stack. THEN removes the test result from the

stack. If the value is non-zero, the true-clause is executed. Otherwise,

program execution resumes following END.

The IF.. .THEN. . .ELSE.. .END Structure

IF.. .THEN.. ELSE...END executes one sequence of commandsifa test
is true, and another sequence of commandsifthat test is false. The syntax
is:

IF test-clause THEH true-clause ELE false-clause EHL:

If the test-clause is an algebraic, it is automatically evaluated to a number
(—NUM or EVAL isn’t necessary).

As a typing aid, press (] .tokeyin:

IF

THEH

ELZE

EHL:

496 26: Tests and Conditional Structures

Example 1: IF...THEN.. .ELSE.. .END. The following program
takes a valuex from the stack and calculates sin x/x. Atx = 0 the division
would error, so the program returns the limit value 1 in this case:

+ x « IF 'x#8' THEN x SIN x » ELSE 1 EHMD » =»

Example 2: IF.. .THEN.. .ELSE...END. This program, like example
2 for IF.. .THEN. . END, multiplies two numbers together if they are
both non-zero. However, the program returns the string "ZERO" if
either value is 0.

Program: Comments:

%

+ nl n2 Stores the values from levels 1 and 2

in local variables.

Starts the defining procedure for the
local variable structure.

IF Starts the test clause.

'nl#8 AND nz=8' Tests n1 and n2.

THEH If both numbers are non-zero ...

nl n2 #* ... multiplies the two values.

ELSE If both numbers are not non-zero ...

"ZERD" ... returns the string ZERO.

END Ends the conditional.

» Ends the defining procedure.

&

How IF.. .THEN.. .ELSE.. .END Works.IF begins the test-clause,
which leaves a test result on the stack. THEN removes the test result from
the stack. If the value is non-zero, the true-clause is executed. Otherwise,

the false-clause is executed. After the appropriate clause is executed,
execution resumes following END.

26: Tests and Conditional Structures 497

The CASE...END Structure

The CASE.. .END structure lets you execute a series of cases (tests). The
first test that returnsa true result causes execution of the corresponding
true-clause, ending the CASE.. .END structure. Optionally, you can
include after the last test a default clause that is executed if all the tests
evaluate to false.

The CASE...END structure has the syntax:

CHSE

test-clause, THEM true-clause, EHD
test-clause, THEH true-clause, EHD

test-clause, THEHM true-clause, EHD:
default-clause (optional)

EHD

As typing aids, press () to key in:

CASE

THEH

EHD

EMD

and [*]

THEH

EHMD

Example: The CASE...END Structure. The following program
stores the level 1 argumentin a variable if the argumentis a string,list, or
program.

498 26: Tests and Conditional Structures

Program: Comments:

&

oy Stores the argumentin local variable
y.

% Starts the defining procedure.

CRSE Starts the case structure.

gy TYPE 2 SAME Case 1: If the argumentis a string,
THEH 4y 'STR' STO EMD storesitin STR.

y TYPE 5 SAME Case 2: If the argumentis a list,
THEH o 'LIST' STO EHD storesitin LIST.

g TYPE 8 SAME Case 3: If the argument is a program,
THEM u 'FREOG' STO EHMD stores it in PROG.

EHD Ends the case structure.

Ends the defining procedure.

»

How CASE...END Works. When CASE is executed, test-clause, is
evaluated. If the test is true, true-clause, is executed, and execution skips
to END.If test-clause,is false, execution proceeds to test-clause,.
Execution within the CASE structure continues until a true-clauseis
executed, or until all the test-clauses evaluate to false. Optionally, a
default clause can be included. In this case, the default-clause is executed
if all the test-clauses evaluate to false.

Conditional Commands

The IF.. .THEN...END and IF.. THEN.. .ELSE structures are useful for
situations where the true-clause and false-clause are sequences of
commands and objects. Two commands, IFT (If...Then) and IFTE
(If.. Then.. .Else), let you easily execute the same decision-making
process if the true- and false-clauses are each a single command or object.

26: Tests and Conditional Structures 499

The IFT (If-Then-End) Command

The IFT command takes two arguments: a test result in level 2 and an
object in level 1 (the “true clause”). The object in level 1 is executed if the
test result is true.

Example: The IFT Command. The following program removes a
number from the stack and displays FOSITIVE if the number is positive.

@8 > "POSITIVE" IFT »

The IFTE Function

The IFTE function takes three arguments: a test result in level 3, and
objects in levels 2 and 1. The level-2 object (the “true-clause”) is executed
if the test result is true. Otherwise, the level-1 object (the “false-clause”)
is executed.

Example: The IFTE Command. This program takes a value from
level 1 and displays FOSITIVE if it is positive or zero, and MHEGATIVE
otherwise:

« 8 2 "POSITIVE" "MEGATIVE" IFTE =*

Using IFTE in Algebraics. The IFTE function can also be used as a
function in algebraics. It has the syntax:

IFTEtest, true-clause, false-clause >

Example: The IFTE Function. This program is a user-defined
function that takes a number (x) from the stack and calculates sin(x)/x ifx
is non-zero. Ifx is 0, the program returns 1:

% » '"IFTECx=0, SINCx10" 2

500 26: Tests and Conditional Structures

27

Loop Structures

Loop structures execute a part of a program repeatedly. There are two
fundamental types ofloops:

m For a definite loop, the program specifies in advance how many times
the loop clause will be executed.

® In an indefinite loop, the program usesa test to determine whether to
execute the loop-clause again.

Like the conditional structures described in chapter 26, looping structures
are built with commandsthat work only when used in proper combination
with each other. These commands are contained in the PRG BRCH menu

(PRG))-

Definite Loop Structures

There are two definite loop structures. Each has two variations:

m START...NEXT and START.. .STEP.

m FOR.. NEXT and FOR.. .STEP.

27: Loop Structures 501

The START...NEXT Structure

START.. NEXT executes a portion of a program a specified number of
times. The syntax is:

start finish STRART loop-clause HEXT

As a typing aid, press [()E

to key in:

START

HEXT

Example: A START...NEXT Loop. The following program creates a
list containing ten copies ofthe string "AEC":

« 1 18 STRET "ABC" MERT 18 =*LIST »

How START...NEXT Works. START takes two numbers (start and
finish) from the stack and stores them as the starting and ending values
for a loop counter. Then, the loop-clause is executed. NEXT increments
the counter by 1 andtests to see if its value is less than or equal to finish.
If so, the loop-clause is executed again.

502 27: Loop Structures

Syntax

start

finish

START

loop-clause

NEXT

Flowchart

1: start

2: finish

counter=start

Store finish

v

Body of loop

Y

counter=

counter+1 yes

 Y

Notice that the loop-clause is always executed at least once.

27: Loop Structures 503

The START...STEP Structure

START.. .STEP works just like START. . .NEXT, except that it lets you
specify an incrementvalue other than 1. The syntax is:

start finish START loop-clause increment STEF

As a typing aid, press (] to key in:

STARET

STEP

Example: A START...STEP Loop. The following program takes a
number x from the stack and calculates the square of that number x/3
times:

« DUP =+ 3 « x 1 START = S0 -2 STEF =

How START...STEP Works. START takes two numbers (Start and
finish) from the stack and stores them as the starting and ending values of
the loop counter. Then, the loop-clause is executed. STEP takes the
increment value from the stack and increments the counter by that value.
If the argument of STEP is an algebraic or a name,it is automatically
evaluated to a number.

The increment value can be positive or negative. If it is positive, the loop
is executed again when the counteris less than or equal to final. If the
increment value is negative, the loop is executed when the counteris
greater than or equal to final. In the following flowchart, the increment
valueis positive.

504 27: Loop Structures

Syntax

start

finish

START

loop-clause

increment

STEP

Flowchart

1: start

2: finish

v

counter=start

Store finish

v

Body of loop
v

1: increment

counter=counter+

increment
Y

Is

counter <

finish?

27: Loop Structures

yes

505

The FOR...NEXT Structure

A FOR...NEXT loop executes a program segment a specified number of
times using a localvariable as the loop counter. You can use this variable
within the loop. The syntax is:

start finish FOR counter loop-clause HEXT

Asa typing aid, press [(a)FiiF to key in:

FiR
MEHT

Example 1: A FOR...NEXT Loop. The following program places the
squares of the integers 1 through 5 on the stack:

£ 1 5 FOR 4§ J S0 MEMT =

Example 2: A FOR...NEXT Loop. The following program takes the
value x from the stack and computes the integer powers i of x. For
example, when x = 12 and start and finish are 3 and 5 respectively, the
program returns 123, 12%, and 12°. It requires as inputs Start and finish in
levels 3 and 2, and x in level 1:

% x= % FOR n '="n' EVYAL HE=ST = =

+ » removes x from the stack, leaving start and finish there as arguments
for FOR.

How FOR. ..NEXT Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counteras a loop counter. Then, the loop-clause is
executed; counter can appear within the loop clause. NEXT increments
counter by one, and then tests whether counteris less than or equal to
finish. If so, the loop-clause is repeated (with the new value of counter).

When the loop is exited, counteris purged.

506 27: Loop Structures

Syntax Flowchart

start 1: start

finish 2: finish

counter=start

FOR Store finish

loop-clause Body of loop

counter= yes

counter +1

NEXT *

27: Loop Structures 507

The FOR...STEP Structure

FOR...STEP works just like FOR...NEXT, exceptthatit lets you specify
an increment value other than 1. The syntax is:

start finish FOR counter loop-clause increment ZTEF

 Asa typing aid, press (] to key in:

FOR
STEP

Example 1: A FOR...STEP Loop. The following program places the
squares of the integers 1, 3, 5, 7, and 9 on the stack:

£ 1 9 FOR = = S0 2 STEP *

Example 2: A FOR...STEP Loop. The following program takes n
from the stack, and returns the series of numbers 1,2, 4, 8,16, ...n.Ifn

isn’t in the series, the program stopsat the last valueless than n:

% 1 SMAF FOR n n n STEF »

How FOR...STEP Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Next, the loop-clause is executed;
counter can appear within the loop clause. STEP takes the increment
value from the stack and increments counter by that value.

The increment value can be positive or negative. If the incrementis
positive, the loop is executed again when counteris less than or equalto
final. If the incrementis negative, the loop is executed when counteris
greater than or equal to final.

When the loop is exited, counter is purged.

(In the following flowchart, the increment value is positive.)

508 27: Loop Structures

Syntax Flowchart

start 1: start

finish 2: finish

counter=start
FOR Store finish

loop-clause Body of loop jE—

increment 1. increment yes

counter=counter+

increment

STEP *

no

27: Loop Structures 509

Indefinite Loop Structures

The DO...UNTIL...END Structure

DO...UNTIL.. .END... executes a loop repeatedly until a test returns a
true (non-zero) result. Since the test-clause is executed after the loop-
clause, the loop is always executed at least once. The syntax is:

0 loop-clause UHMTIL test-clause EHD

 Asa typing aid, press [q]) o key in:

Do

UMTIL

EHD

Example: A DO...UNTIL...END Loop. The following program
calculatesn + 2n + 3n + ... for a value of n. The program stops when the
sum exceeds 1000, and returns the sum and the coefficient of n.

Program: Comments:

&«

DUP 1 + n = Duplicates n and stores the value
into n and s; initializes counter ¢ to 1.

Starts the defining procedure, in this
case a program, for the local variable
structure.

oo Starts the loop-clause.

‘o' IMCR Increments the counter by 1. (INCR
is discussed on page 513.)

n* 's' STO+ Calculates ¢ x n, and adds the

product to s.

510 27: Loop Structures

UHMTIL Startsthe test clause.

s 1688 > Repeats loop until s >1000.

END Ends the test-clause.

s Puts s and ¢ on the stack.

» Ends the defining procedure.

How DO...UNTIL...END Works. DO starts execution ofthe loop-
clause. UNTIL ends the loop clause and begins the test-clause. The test-
clause leavesa test result on the stack. END removes the test result from
the stack. If its value is zero, the loop-clause is executed again; otherwise,
execution resumes following END.

Syntax Flowchart

DO

loop-ciause Body of loop <€

UNTIL +

Test

test-clause + no

1: test result

test result

non-zero?
END

27: Loop Structures 511

The WHILE.. .REPEAT...END Structure

WHILE.. .REPEAT.. .END repeatedly evaluatesa test and executes a
loop-clause if the testis true. Since the test-clause occurs before the
loop-clause, the loop-clause is never executed if the testis initially false.
The syntax is:

WHILE test-clause REFERT loop-clause EHD

 As a typing aid, press (€] * to key in:

WHILE

EEFERT

EHD

Example 1: A WHILE...REPEAT...END Loop. The following
program starts with a number on the stack, and repeatedly performs a
division by 2 as long as the result is evenly divisible. For example, starting
with the number 24, the program computes 12, then 6, then 3:

4 WHILE DUF 2 MOD @ == REPERT & ~ DUP EHMD DROF =

Example 2: A WHILE...REPEAT...END Loop. The following
program takes any number of vectors or arrays from the stack and adds
them to the statistics matrix. (The vectors and arrays must have the same
number of columns.) WHILE.. REPEAT...END is used instead of
DO...UNTIL.. END because the test must be done before the addition.
(If only vectors or arrays with the same number of columns are on the
stack, the program errors after the last vector or array is added to the
statistics matrix.)

« WHILE DUF TYFE 2 == REFERT I+ EMD »

How WHILE.. .REPEAT...END Works. The test-clause is executed

and returns a test result to the stack. REPEAT takes the value from the

stack. If the value is non-zero, execution continues with the loop-clause;

otherwise, execution resumes following END.

512 27: Loop Structures

Syntax Flowchart

WHILE

3 Test

test-clause *

1: test result

REPEAT

test result no
non-zero?

loop-clause —| Body of loop

END Y

Loop Counters (INCR and DECR)

The INCR (increment) command ([][MEMORY] takes a global
or local variable name as its argument. The variable must contain a real
number. The command:

m Returns the new value of the variable.

m Increments by 1 the value stored in the variable.

For example,if ¢ contains the value 5, '=' IHCRE returns 6 to the stack

and stores 6 in c.

The DECR (decrement) command is analogous to INCR, except thatit
subtracts 1 from the specified variable.

27: Loop Structures 513

Example: Using a Loop Counter with an Indefinite Loop. The
following program takes a maximum offive vectors from the stack and
adds them to the current statistics matrix.

Program:

&«

8+ c

WHILE

LUFP TYPE 3 ==

'c' IHCE

AHD

REFERT

2+

EHD

514 27: Loop Structures

Comments:

Stores 0 in local variable c.

Starts the defining procedure for the
local variable structure.

Starts the test clause.

Returnstrue if level 1 contains a

vector.

Increments the value in ¢ and puts
the incremented value in level 1.

Returns true if the incremented

value of ¢ < 5.

Returns true if the two previous test
results are true.

Adds the vector to XDAT.

Ends the WHILE. .REPEAT

structure.

Ends the defining procedure.

28

Flags

Flags are an important programming tool in the HP 48. You can think of
a flag as a switch that is either on (sef) or off (clear). A program can test a
flag’s state within a conditional or looping structure (described in the
previous chapters) to make a decision. Since flags have unique meanings
for the calculator,flag tests expand a program’s decision-making
capabilities beyond that available with comparison and logical functions.

Flag Types

There are two types of flags in the HP 48: system flags, numbered -1
through —64; and user flags, numbered 1 through 64. System flags have a
predefined meaning for the calculator. For example, system flag —40
controls the clock display—when this flag is clear (the default state), the
clock is displayed only when the TIME menu is selected; when this flag is
set, the clock is displayed at all times. (Actually, when you press
in the MODES menu, you set or clear flag —40.) Appendix E lists the 64
system flags and their definitions.

28: Flags 515

User flags are not used by any built-in operations; what they mean
depends entirely on howyou define them. When you set a user flag 1
through 5, the corresponding annunciatoris activated. (Note that plug-in
cards, described in chapter 34, may affect the settings of user-flags
31—64.)

Setting, Clearing, and Testing Flags

The following commands take as their argument a flag number— an
integer 1 through 64 (for userflags), or —1 through —64 (for system
flags).

Flag Commands

Keys Programmable Description
Command

(page3) (or (>][MODES] pages 2 and 3):

SF Sets the flag.

CF Clears the flag.

FS? Returns true (1) if the flag is set, or
false (@)if the flag is clear.

FC? Returns true (1) if the flag is clear, or
false () if the flag is set.

FS?7C Tests the flag (returns true if the flag is
set), then clears the flag.

FC?C Tests the flag (returns true if the flag is
clear), then clears the flag.

Example: Testing a System Flag. The following program sets an
alarm for June 6, 1991 at 5:05 PM.It first tests the status of system flag
—42 (the Date Format flag) in a conditional structure and then supplies
the alarm date in the current date format, based on the test result.

516 28: Flags

Program:

&

IF

-42 FC?

THEH

6.131991

ELSE

15.0861931

EHD

17.85 "TEST COMFLETE"

2 +LIST STOARLARM

&

Comments:

Teststhe status of flag —42, the Date
Format flag.

If flag —42 is clear, supplies the date
in month/day/year format.

If flag —42 is set, supplies the date in
day.month.year format.

Ends the conditional.

Completes the set-alarm command
sequence. (17 .85 is the alarm time
and "TEST COMPLETE"is the

alarm message.)

Example: User Flags in Programs. The following program returns
either the fractional or integer part of the level 1 argument, depending on
the state of userflag 10.

Program:

%

IF

18 FS7?

THEH

IP

ELSE

FP

EHL

Comments:

Starts the conditional.

Tests the status of user flag 10.

If flag 10 is set...

... returns the integer part.

If flag 10 is clear ...

... returns the fractional part.

Ends the conditional.

28: Flags 517

Before you execute this program, you setflag 10 if you wantto return the
integer part of the argument, or you clear flag 10 if you want to return the
fractional part of the argument. Flag 10 is defined to have a unique
meaning in the program;its status determines which part of the level 1
argumentis returned to the stack.

Recalling and Storing the Flag States

The RCLF (recall flag status) and STOF (store flag status) commands let
you recall and then store the status of the HP 48 flags. The commands let
a program thatalters the status ofa flag or flags during execution
preserve the pre-program-execution flag status.

Recalling the Flag States

RCLF returns a list containing two 64-bit binary integers that represent
the current status of the system flags and user flags respectively:

{ #ng #n,

The rightmost(least significant) bits of #n; and #n, represent the states
of system flag —1 and user flag +1 respectively.

Storing the Flag States

STOF sets the currentstates of the system flags, or the states of both the
system and user flags. It takes as its argumenteither:

m A single binary integer (#n;), in which case only the corresponding
system flags are set or cleared.

m A list containing two binary integers ({ #n; #n,), in which case
the corresponding system and userflags are set or cleared.

A bit with value 1 sets the corresponding flag; a bit with value 0 clears the
corresponding flag. The rightmost (least significant) bits of #n; and #n,
set the states of system flag —1 and user flag +1 respectively.

The program PRESERVE on page 555 in chapter 31 uses RCLF and
STOF.

518 28: Flags

29

Interactive Programs

Simple programslike those in chapter 25 use data that is supplied before
program execution and return results as unlabeled numbers. Such
programs may be difficult to use, particularly if you are not the program
author. You must know what arguments to enter on the stack and in what
order to enter them, and you must know how to interpret the results
returned to the stack.

Interactive programs do any of the following:

m Stop during execution to prompt you for data.

m Display program results with explanatory messages or tags.

m Stop during execution so that you can make a choice about how you
want the program to proceed.

29: Interactive Programs 519

Suspending Program Execution for Data

Input

Data Input Commands

Keys Programmable Description
Command

(«) CONT Restarts a halted program.

PRG ‘(pages 1, 2 and 3):

i HALT Halts program execution.

INPUT Suspends program execution for data
input. Prevents stack operations while
the program is paused.

PROMPT Halts program execution for data input.

DISP Displays an object in the specified line
of the display.

WAIT Suspends program execution for x
seconds, where x is a number from
level 1.

KEY Returns a test result to level 1 and,if a
key is pressed, the location of that key.

BEEP Sounds a beep at a specified
frequency for a specified duration.

age 4):

CLLCD Blanks the display.

FREEZE “Freezes”a specified area of the

 display so thatit is not updated until a
key press.

520 29: Interactive Programs

The PROMPT Command

PROMPT takes a string argument from level 1, displays the string
(without the " delimiters) in the status area, and halts program
execution. Calculator controlis returned to the keyboard. Program
execution is resumed by executing CONT. For example, when you execute
the program segment:

« "ABC?" PROMPT »

the display looks like this:

ABC?

4.

3
2

PRETS]PROEWVYP [HATR[WECTE]EnE

The messageis displayed until you press or or until you
update the statusarea (for example, by pressing (1] [REVIEW]).

The following program, TPROMPT, prompts you for the dimensions of a
torus, then calls program TORSA (chapter 25, page 481) to calculateits
surface area. You don’t have to enter data on the stack prior to program
execution.

Arguments Results

1: 1: area

Program: Comments:

¢:

"EMTER a, b IM ORDER:" Puts the prompting string on the
stack.

29: Interactive Programs 521

PROMPT Displays the string in the status area,
halts program execution, and returns
calculator control to the keyboard.

TORSA Executes TORSA, using the just-
entered stack arguments.

»

(] TPROMPT Stores the program in TPROMPT.

Example: Prompting for Data Input in a Program. Execute
TPROMPTto calculate the volume of a torus with inner radius ¢ = 8

inches and outer radius b = 10 inches.

Select the VAR menu and start TPROMPT.

VAR] |

ENTER a, b IN ORDER:

4:

The program prompts you for data. Enter the inner and outer radii. Note
that after you press [ENTER], the prompt message is cleared from the
status area.

8 10 o 3 T

J:
23

1: 8
104
(TokzalTPEO]cHIo]|||

Continue the program.

[« 1: 395.385758439
chan]||

The answeris returned to level 1 of the stack.

Note that when program execution is suspended by PROMPT, you can
execute calculator operations just as you did before you started the
program. Suppose the outer radius b of the torusin the previous example
is measured as 0.83 feet. You can convert that value to inches while the
program is suspendedfor data input by pressing .83 12 [x].

522 29: Interactive Programs

The BEEP Command

The BEEP commandlets you enhance an interactive program with
audible prompting. BEEP takes two arguments from the stack: the tone
frequency from level 2 and the tone duration from level 1. The following
edited version of TPROMPTsounds a 440-hertz, one-half-second tone at
the prompt for data input.

Program: Comments:

&

"EMTER a, b IM ORDERE:"

448 .5 EEEP Sounds a tone to audibly supplement
the prompt for data input.

FROMFT

TORSA

The DISP, HALT and FREEZE Commands

DISP, HALT, and FREEZE can be used together to prompt for data
input:

m DISP displays an object in a specified line of the display. DISP takes
two arguments from the stack: an object from level 2, and a display-
line number 1 through 7 from level 1. To facilitate the display of
messages, DISP displays string objects without the surrounding "
delimiters.

Note that the display created by DISP persists only as long as the
program continues execution. When the program ends, or when it is
suspended by the HALT command, the calculator returns to the
normalstack environment, and the display is automatically updated.

m FREEZE “freezes” one or more display areas so they are not
updated until a key press. Argumentn in level 1 is the sum ofthe
value codes for the areas to be frozen. The value codes are: 1 for the
status area; 2 for the stack/command line area; 4 for the menu area.

29: Interactive Programs 523

m HALT suspends program execution at the location of the HALT

command and turns on the HALT annunciator. Calculator controlis
returned to the keyboard for normal operations. Program execution is
resumed by executing CONT (or SST).

For example, when you execute the following program:

« "ABCaDEFmGHI" CLLCD 1 DISP 3 FREEZE HALT =»

the display looks like this:

ABC
DEF
GHI

[PHET:]PROEHYPJHATR[VECTE]EnzE]
(The = in the previous program is the calculator’s representation for the
« (newline) character once a program has been entered on the stack.)

The INPUT Command

INPUT is used to prompt for data input when the programmer does not
want the user to have access to stack operations. Consider the following
program:

€ "Wariable name?" "iVAR:" IHPUT =

When this program is executed, the display looks like:

PRG
{ HOME }
Variable name?

:VAR: 4
[PHETS]PROEHYPMRVECTR]ERZE

1. The stack area is blanked, and the contents ofthe string from
level 2, Yariable name?, are displayed at the top of the stack
area. The string from level 2 is called thepromptstring.

524 29: Interactive Programs

2. The contentsof the string from level 1, :*%AR:, are displayed in the
commandline. The string from level 1 is called the command-line
string. Program-entry mode is activated and the insert cursor is
positioned after the string. The program is now suspended for data
input.

3. Program execution is continued by pressing [ENTER], which returns
the contents of the commandline to the stack as a string, called the
result string.

The following program, VSPH,calculates the volume of a sphere. VSPH
first calculates #/; w, then prompts for the radius of the sphere and
completes the calculation. Because a partial calculation is already on the
stack, VSPH protects the stack by executing INPUT to prompt for the
radius. INPUT sets Program-entry mode when program execution pauses
for data entry. Subsequent commands are not executed immediately—
instead, they are listed in the command line until the user presses (ENTER].

Arguments Results

1: 1: volume

Program: Comments:

4 3 7w % *HUM

"Keg in radius"

IHFUT

Starts the calculation.

Builds the prompt string, displayed
at the top of the stack area.

Builds the command-line string. In
this case, the string is empty, so the
command line will be empty.

Displays the stack-area prompt,
positions the cursor at the start of
the command line, and suspends the
program for data input (the radius of
the sphere).

29: Interactive Programs 525

OBJ+ Converts the result string into its
component object— a real number.

3~ ox Cubes the radius and completes the
calculation.

»

(] VSPH Stores the program in VSPH.

Example: Prompting for Data with INPUT. Execute VSPH to
calculate the volume of a sphere of radius 2.5 meters.

Select the VAR menu and start the program.

VAR PRG

{ HOME }
Key in radius

+
I)N(RI

To show how INPUT protects the stack, press [(q](DROP].

PRG
(«a)(DROP £ HOME 3

Key in radius

OROP +
|TT(To|

DROPis listed in the command line, but is not executed, so the partial

calculation in level 1 is protected.

Press [ATTN] to restore the command line. Then key in the radius and
continue program execution.

 1: 63, 4498469497
2.5 [ENTER] [vsPH]TOR:R]TPROJcH.30]—T|

Options for the INPUT Command.In its general form, the level 1
argument for INPUT is a /ist that specifies the content and interpretation
of the command line. The list can contain one or more of the following
parameters, in any order:

m The command-line string, whose contents are placed in the command
line for prompting when the program pauses.

526 29: Interactive Programs

m Either a real number, or a list containing two real numbers, that

specifies the initial cursor position in the command line:

m A real number 7 at the nth character from the left end of the first
row (line) of the command line. Apositive n specifies the insert
cursor; a negative n specifies the replace cursor. 0 specifies the
end of the command-line string.

m A list that specifies the initial row and column position of the
cursor: the first number in the list specifies a row in the
command line (1 specifies the first row of the command line); the
second number counts by characters from the left end of the
specified line. 0 specifies the end of the command-line string in
the specified row. A positive row number specifies the insert
cursor; a negative row number specifies the replace cursor.

m One or more of the parameters ALG,a, or V, entered as unquoted

names:

m ALG activates Algebraic/Program-entry mode.

® o ([a] [>](A)) specifies alpha lock.

m V verifies if the charactersin the result string, without the *
delimiters, compose a valid object or objects. If the result-string
characters do not compose a valid object or objects, INPUT
displays the Inwalid Suntax warning and prompts again for
data.

The INPUT Default State. You can choose to specify as few as one of
the level 1 list parameters. The default states for these parameters are:

m Blank commandline.

m Insert cursor placed at the end of the initial command line string.

m Program-entry mode.

m Command-line string not checked for invalid syntax.

If you specify only a command-line string for the level 1 argument, you do
not need to put it in a list. For example, the previous program, VSPH,
specifies an empty command-line string for the level 1 argument.

29: Interactive Programs 527

Building the Command-Line String. After the user inputs data to
the command line and presses to resume program execution, the
contents of the command line are returned to level 1 as the result string.
To process the input, the program may at some point execute OBJ— to
convert the result string to a valid object or objects. The program can
accomplish this by specifying a command-line string of known form and
then taking appropriate action after the result string is returned to level 1:

m The program can specify an empty command-line string. In this case,
the result string consists only of the input. The program VSPH on
page 525 uses this method.

m The program can specify a command-line string whose characters
form the tag and delimitersfor a tagged object. (See page 87 for a
discussion of tagged objects.) In this case, the input completes the
tagged object. The program TINPUT on page 529 uses this method.

m The program can specify a command-line string whose characters
form a message. In this case, the program subtracts those characters
from the result string to leave only the input in the string in string
form. The program SSEC on page 531 uses this method.

In the first two cases, the V parameter can also be specified as part of the
level 1 argument to specify that INPUT reprompt for data if the contents
of the result string are not valid objects.

The following program, TINPUT, executes INPUT to prompt for the
inner and outerradii of a torus, then calls TORSA (chapter 25, page 481)
to calculateits surface area. TINPUT prompts for @ and b in a two-row
command line; the level 1 argument for INPUT is list that contains:

m The command-line string.

m An imbedded list specifying the initial cursor position.

m The V parameter to check for invalid syntax in the result string.

The command-line string forms the tags and delimiters for two tagged
objects. The list does not specify the entry mode, so Program-entry mode
is selected by default.

528 29: Interactive Programs

Arguments Results

1: 1: area

Program: Comments:

«

"Key in as b"

"ratmibi" {1 @3 V

3

IMPUT

OBJ»

Builds the level 2 string, displayed at
the top ofthe stack area.

Starts the level 1 list argument.

Thelevel 1 list contains a command-
line string, a list, and the verify-
syntax specification. (To key in the
string, press [(]3] a]
(][] (]2 b. After you press

to put the finished program
on the stack, the string will be shown
on one line, with the = character
indicating the newline character.)
The imbedded list positions the
insert cursor in row 1 just after :a:.
V specifies to check for invalid
syntax in the result string.

Ends the level 1 list argument.

Displays the stack string and
command-line string, positions the
cursor as specified by the list in the
level 1 argument, and, by default,

sets Program-entry mode. Then
suspends program execution for
data. Checks the resultant string for
syntax errors.

Converts the string into its
component objects (in this case, two
tagged objects).

29: Interactive Programs 529

TORSA Calls TORSA to calculate the surface

area.

&

(] TINPUT Stores the program in TINPUT.

Example: Prompting for Data with Input. Execute TINPUT to
calculate the surface area of a torus of inner radius ¢ = 10 cm and outer

radius b = 20 cm.

Select the VAR menu and start the program.

‘ PRG
{ HOME }
Key in as b

HH

[TINPUTW2PH[TORZH]TREO[CH.30]|

Key in the value for @ and press [V] to move the cursor to the next prompt
in the command line. Then keyin the value for b.

10 (Y] 20 { HOME } PRG
Key in as b

1a:10
th: 704
(TINPUTVsPH[TORsH]TPEOJCH.30]|

Continue program execution.

1: 2960. 881326833
[TiNPU]v5PH[TORSA[TPEOTcH-30]|

The following program executes INPUT to prompt for a social security
number, then extracts in string form the first three digits and last four
digits from the result string. The level-1 argument for INPUT specifies:

m A command-line string.

m The replace cursor positioned at the start of the prompt string (-1).
The replace cursor lets the user “fill in” the command line string,
using [»] to skip over the dashesin the social-security number.

m By default, Program-entry mode.

m By default, no verification of object syntax—the dashes in the social-
security number are not valid characters outside the string delimiters.

530 29: Interactive Programs

Arguments Results

2t z2: " first three digits"
1: 1: "lastfour digits"

Program: Comments:

%

"Key in 5.5. #" Builds the level 2 string, displayed at
the top of the stack area.

L -1 0% Builds the level 1 argument for
INPUT. (Key in 3 spaces between
the first " delimiter and the first —,
two spaces between the two -’s, and
4 spaces between the last - and the
ending " delimiter.)

IHPUT Suspends the program for data.

DUFP 1 3 SUE Copies the result string, then extracts
SWAP the first three and last four digits in
g 11 sUE string form.

#

(] SSEC Stores the program in SSEC.

Labeling Program Output

A descriptive tag or message can make program output more

recognizable.

29: Interactive Programs 531

Using Tagged Objects as Data Output

You can label a program result using the #TAG command. -=TAG
((PRG] takes two arguments: any object from level2,
andan al number (the tag) from level 1.

 g,

The following program TTAG is identical to TINPUT, exceptthatit tags
the result.

Program: Comments:

#

"Key in a, b"

{ "tatmib:" {1 B2 4 2

IHPUT OBJ+

TORSA

'ARER" Buildsthe tag, in this case a name.

+TAG Joins the tag to the object in level 2,
the program result, to create the
tagged object.

¥

[TTAG Stores the program in TTAG.

Example: Using a Tagged Object for Data Output. Execute
TTAG to calculate the area of a torus of inner radiusa = 1.5and b =

1.85.

Select the VAR menu and start the program. Supply the values for @ and b
and continue program execution. The answeris returned as a tagged
object to the stack.

 AG 1: ARER: 11.57211116A3
1.5 (v) 1.85 [TTh5[TINPU]2PH[T05:2A]TPRD

|

CH.30]
ENTER

532 29: Interactive Programs

Using String Commands to Label Data Output

You can use string commands and DISP to label and display an object
that has been returned to level 1 of the stack:

1. C

)
the object to a string with +STR ([PRG]

2. Enter a labeling string on the stack.

3. Swap the two strings on the stack, then concatenate them (SWAP
+).

4. Display the resultant string (n DISP).

Thefollowing program TSTRING is identical to TINPUT, exceptthatit
converts the program result to a string and appends a labeling stringto it.

Program:

«

"Keyg in a, b"

£ "tatmib:" {1 @3 W X

IMFUT OB+

TORSAH

+5TR

"Area =

SHAF +

CLLCD 1 DISFP 1 FREEZE

&

0 TSTRING

Comments:

Converts the result to a string.

Enters the labeling string.

Swaps the positions ofthe two
strings on the stack and adds them.

Displays the resultant string, without
its delimiters, in line 1 of the display.

Stores the program in TSTRING.

29: Interactive Programs 533

Example: Labeling Data Output. Exccute TSTRING to calculate
the area ofthe torus in the previous example (@ = 1.5,b = 1.85).

Select the VAR menu and start the program. Supply the values for a and b
and continue program execution. The labeled answer is displayed in the
status area.

Area = 11.5721111603
1.5(v) 1.85 41

eF
2
1:
TETRI| TTAG [TINPU| Y2PH|TORZA] TPRO

Pausing to Display Data Output

The WAIT command ([PRG] EZTKL __ suspends program
execution for x seconds, where x is a positive real number from level 1.
You can use WAIT with DISP to display messages during program
execution— for example, to display intermediate program results.

WAIT interprets arguments 0 and -1 differently— see “Commands That
Return a Key Location” on page 539.

Using Menus in Programs

Applications menus like the SOLVE and PLOT menus, as well as the
VAR and CST menus, can be activated and used in a program as they are
during normal keyboard operations.

Displaying a Built-In Menu

To display a built-in menu in a program, execute the MENU command

(PRG] NXT with the numeric argumentthat
correspondsto that built-in menu. The table in Appendix D lists all the
HP 48 menus and their corresponding menu numbers. For example, 28
MEHU activates page 1 of the MODES menu. You can specify a particular
page of a menu by supplying the argumentin the form xx.yy, where xx is
the menu number, and yy is the page number.

534 29: Interactive Programs

The following program activates the third page of the MODES menu and
asks you to set the angle mode.

« 28.83 MEHMU "Select Angle Mode" FPROMPT *

RCLMENU ([c*][MODES]
the currently displayed menu.

returns the menu number of

Custom Menus in Programs

In chapter 15 you learned how to build a custom menu by supplying a list
argument for MENU.In programs, you can construct custom menus to:

= Emulate built-in applications like the HP Solve application.

= Prompt you to make decisions.

Emulating Built-In Applications. The following program, EIZ,
constructs a custom menu to emulate the HP Solve application for
capacitive electrical circuits.

M /I

Application of Ohm’s law to thiscircuit results in the following expression:

E =1Z

where

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the HP Solve application to find solutions. The custom menu
in EIZ assigns a direct solution to the left-shifted menu key for each
variable, and assigns store and recall functionality to the unshifted and
right-shifted keys— the key actions are analogous to the HP Solve
application.

29: Interactive Programs 535

Program:

&

%

DEG

-15 SF -16 SF 2 FIx

i

£ "E" { « 'E' STO »

« 1 2 % DUP 'E' STO
"E" +TRAG
CLLCD 1 DISP
1 FREEZE »
£ E» 3}

{ IIIII { & III

« EZ 7 DUP 'I'
"I 3TAG
CLLCD 1 DISP
1 FREEZE »
€1 % 33

STO »

STO

¢ "zt ¢« 'Z' STO »
£ E 1 7 DUP 'Z'
"z TAG
CLLCD 1 DISP
1 FREEZE »
€2z 33

¥

MEHL

[ENTER] (J EIZ (STO]

536 29: Interactive Programs

Comments:

Sets Degrees mode. Sets flags —15
and - 16 to display complex numbers
in polar form. Sets the display mode
to 2 Fix.

Starts the list for the custom menu.

Builds menu key 1, labeled
When you press , the object
in level1 is stored in variable E.
When you press (€] , the
product of I and Z is calculated,
stored in variable E, and displayed as
a tagged ob]ect When you press

, the object stored in E is
returnedto level 1.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in EIZ.

Example: Emulating a Built-In Application. A 10-volt power
supply at phase angle 0° drives an RC circuit. A current of .37 A at phase
angle 68° is measured. Whatis the impedance ofthe circuit?

Select the VAR menu and start EIZ.

VAR

Le+[zT[|

Key in the value for the voltage.

@I 10 [(@)[&]0 |1848¢ l
CeTv[2[||

Store the value for the voltage. Then key in and store the value for the
current. Solve for the impedance.

Zi (27.03,<£-68.08)

).37 [P)(a]) 68

4:
3z
v
1:

If the current amplitude is doubled and the impedance remains constant,
whatis the complex voltage?

@)Y .74 [>)(2]) 68

Recall the value ofZ to the stack.

)

1: (27.83, <-68.608)
Ce[+121[|

Prompting for a Choice. A custom menu can prompt the user to
make a decision during program execution.

The program WGT in this section calculates the weight of an object in
either English or SI units. WGTbuilds a custom menu that prompts the
userto select the desired unit system. Here is the defining list for the
custom menu:

29: interactive Programs 537

£ "EMGL" # "EMTER Mass
in LE" FROMPT
32.2 # » 3

£ "SI" & "EMTER Mass
in KG" PROMFT
9.81 %

If you store this list in variable LST, program WGTis simply:

Program: Comments:

LET MEHU Displays the custom menu stored in
LIST.

(] WGT Stores the program in WGT.

The custom menu defined by WGT remains active until you select a new
menu, so you can do as many calculations as you want.

Note that the custom menu defined by WGT (and the custom menu
defined by EIZ) is automatically stored in variable CST, replacing the
previous custom menu—when you press after the program ends,
the menu defined by WGT is displayed.

Example: Using a Custom Menu to Make a Choice. Use WGT
to calculate the weight of an object of mass 12.5 kg.

Select the menu and start the program.

(VAR)WGT |TSTeAB|

Select the SI unit system.

]T ENTER Mass in KG

4:

TSee(RSS

538 29: Interactive Programs

Key in the mass and continue program execution.

12.5 (%] (CONT] 1: 122.63
LT5RRYBREAR

Building a Temporary Menu

The TMENU command ([*](MODES] works just like
MENU,exceptthat list arguments do not replace the contents of CST and
so leave the current custom menu unchanged. Note that the temporary
menu remains active until a new menu is selected, even after the program
ends. To programmatically restore the previous menu, execute @ MEHL.

The program « LIST THEHU *is similar to WGT, except thatit builds
a temporary menu to prompt for the unit-system choice.

Commands That Return a Key Location

The WAIT Command with Argument 0

If you supply 0 as the argument for WAIT, the command suspends
program execution until a valid keystroke is executed. It then returns the
three-digit location number that defines where the key is on the keyboard
and restarts program execution. (See section “Making User-Key
Assignments” on page 217 in chapter 15.)

(Note that []], (], [a], [a][€], or [2](>] do not by themselves
constitute a valid keystroke.)

The WAIT Command with Argument -1

The WAIT command with argument —1 works just like it does with
argument 0, except that the currently specified menu is also displayed.
This lets you build and display a prompting menu while the program is
paused. (Note that a menu built with MENU or TMENU is not normally
displayed until the program ends oris halted with HALT.)

29: Interactive Programs 539

The KEY Command

A program can prompt for a simple “yes-no” decision using the KEY
command in an indefinite loop, and a comparison test. (Indefinite looping
structures are covered in chapter 27. Tests are covered in chapter 26.)
When the loop begins, KEY simply returns a false result (8) to level 1
until a key is pressed. Once a keyis pressed, KEY returns the two-digit
location number that defines where the key is on the keyboard and
returns a true result (1) to level 1. For example, when you use KEY in an
indefinite loop and press [ENTER], KEY returns 51 to level 2 and true
result 1 tolevel 1.

The following program segment returns 1 to level 1 if is pressed, or @
to level 1 if any other key is pressed:

€ ... DO UNTIL KEY END 93 SAME ... »

(Note that KEY returns only a two-digit location number RowColumn,
unlike WAIT, which returns a three-digit location numberthat identifies
shifted and alpha keys. Thus,if you press the [¥q] key, KEY returns 71,
while WAIT does notinterpret [€] itself as a valid keystroke.)

Turning the HP 48 Off from a Program

The OFF command turns the HP 48 off. If executed from a program, the
program will resume when the calculatoris turned back on.

540 29: Interactive Programs

30

Error Trapping

When you attempt an invalid operation from the keyboard, the operation
is not executed and an error message is displayed. For example, if you
execute + with a vector and a real number on the stack, the HP 48 returns
the message:

+ Error:
Bad Argument Tupe

and, assuming that Last Argumentsis enabled, returns the arguments to
the stack. In a program, the same thing happens, but program execution is
also aborted. Consider the following program:

« "KEY IM a RHD b" "" IMPUT OBJ+ +

If you execute this program and supply a vector and a real number at the
prompt, the program displays the Ead Argument Tupe error message

and aborts execution at the + command. To supply new arguments, you
mustrestart the program. For a short program like the one above,this
method of error recovery presents little problem. However, when
executing a program that performs time consuming calculations, or that
has numerous stops for intermediate data entry, it may be inconvenientto
restart the program at the beginning each time an error occurs.

30: Error Trapping 541

You can enable a program to continue execution after an error has
occurred by building an error trap. You can construct an error trap with
one of the following conditional structures:

s IFERR...THEN...END.

= JFERR...THEN...ELSE.. END.

The IFERR command is located on page 3 of the PRG BRCH menu.

The following commands enhance error-trap structures:

Error Trapping Commands

Keys Programmable
Command

Description

ERRN

ERRM

ERRO

Executes a user-specified error. The
calculator behavesjust as if an
ordinary error has occurred — if the
error is not trapped in an IFFER
structure, DOERR displays a message
and abandons program execution.

Returns the error number, as a binary
integer, of the most recenterror.
Returns #a if the error number was
cleared by ERRO.

Returns the error message (a string)
for the most recent error. Returns
empty string if the error number was
cleared by ERRO.

Clears the last error number, so that a
subsequent execution of ERRN
returns #8. Also clears the last error

message.

542 30: Error Trapping

The IFERR...THEN...END Structure

The syntax of IFERR...THEN...END is

IFERR trap-clause THEH error-clause END

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumpsto the error-clause. The commands in the error-clause are executed
only if an erroris generated during execution of the trap-clause.

As a typing aid, press [$q]] o key in:

IFERE

THEHN

EHD

Example: An IFERR...THEN.. .END Structure. Recall the
following program from chapter 27, page 512.

4 WHILE DUF TYPE 3 == REPEAT Z+ EMD =

The program takes any number of vectors or arrays from the stack and
adds them to the statistics matrix. However, the program errors if a vector
or array with a different number of columns is encountered. In addition, if
only vectors or arrays with the same number of columns are on the stack,
the program errorsafter the last vector or array has been removed from
the stack.

In the following version, the program simply attempts to add the level 1
objectto the statistics matrix until an error occurs. Atthat point, it
“gracefully” ends by displaying the message [OHE.

30: Error Trapping 543

Program: Comments:

%

IFERR Starts the trap-clause.

WHILE Starts the test-clause of the nested
loop.

1 11is a true result, so executes the

loop-clause until an error occurs.

REFEAT Starts the loop clause.

Z+ Adds the vector or array to the
statistics matrix.

EHD Ends the nested loop.

THEH If an error does occur on execution
of L+ ...

"DOHE" 1 DISF ... displays the message [JHE in the
1 FREEZE status area.

EHD Ends the error trap.

»

The IFERR...THEN.. .ELSE...END Structure

The syntax of IFERR...THEN...ELSE...END is:

IFERR trap-clause THEHerror-clause ELSE normal-clause EHD

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. If no error occurs, execution jumps to the
normal-clause at the completion ofthe trap-clause.

544 30: Error Trapping

As a typing aid, press (]

IFERR

THEH

ELSE

EHD

Example: An IFERR...THEN.. .ELSE...END Structure. The
following program prompts for two numbers, then adds them. If only one
number is supplied, the program displays an error message and prompts
again.

Program:

%

Lo

"KEY IM a AMD b" " "

INFUT 0OBJ+

UHTIL

IFERR

+

THEH

EREM 3 DISF

2 WRIT

@

EHD

Comments:

Begins the outer loop.

Prompts for two numbers.

Startsthe test clause

Starts the errortrap.

Addsthe contents of levels 1 and 2.

If an error occurs ...

... executes ERRM to display the
Too Few Argument s error

message for two seconds, then leaves
@ (false) on the stack for the outer-
loop END.

If an error does not occur ...

...leaves 1 (true) on the stack for
the outer-loop END.

Ends the error trap.

30: Error Trapping 545

EMD Ends the outer loop. If the error trap
left @ on the stack, this END returns

program execution to the prompt for
numbers. Otherwise, the program
ends.

User-Defined Errors

You may want to generate an error in a program when an error would not

normally occur. For example, you might want an error to occurif the sum
of the two numbers on the stack is greater than 10. You can do this with
the DOERR command. DOERRcauses a program to behave exactly as if
a normal error has occurred during execution. The DOERR error can be
trapped in an IFERR structure;if it is not, program execution is
abandoned at the location of the DOERR command. DOERRtakes one
argument from the stack,either:

® A string, in which case the string is used as the message. (ERRM
returns thisstring, and ERRN returns #7@885H.)

m A real number or binary integer, in which case the corresponding
built-in error message is displayed. (ERRM and ERRN return the
corresponding error message and number, respectively.) 0 DOERR is
equivalent to [ATTN]; that is, program execution is aborted and no
message is displayed. (In this case, the values returned by ERRM and
ERRNare unchanged from their previous values.)

The following program aborts execution if there are three objects in the
level 1 list.

&«

OBJ=+

IF 3 SAME

THEH "= OBJECTS IM LIST" DOERR

EHD
&

In this program, DOERR abandons program execution. Alternatively, you
can execute DOERRin the trap-clause of an error trap to enable
program execution to continue.

546 30: Error Trapping

31

More Programming Examples

The programs in this chapter demonstrate programming concepts
introduced in the previous chapters. Some new concepts are also
introduced. The programs are intended to both improve your
programming skills and provide supplementary functions for your
calculator.

At the end of each program, the checksum and the program size in bytes
are listed. The checksum is a binary integer that uniquely identifies the
program based on its contents. To verify that youve keyedthe program in

Y TEZ) with
the program name in level 1. The checksum forthe program is returned
to level 2, anditssize in bytes is returned to level 1. (If you execute
BYTES with the program object in level 1, before storing the program in
its name, you’ll get a different byte count returned to level 1.)

31: More Programming Examples 547

Fibonacci Numbers

This section includes three programs—two demonstrate an approach to
the following problem:

Given an integer n, calculate the nth Fibonacci number F,,, where:

Fy=0,F =1, F, =F,1 +F,,

m FIB1 is a user-defined function that is defined recursively —its
defining procedure contains its own name. FIBIis short.

m FIB2 is a user-defined function with a definite loop. It’s longer and
more complicated than FIB1, but it’s faster.

Thethird program, FIBT, calls both FIBI and FIB2, and calculates the
execution time of each subprogram.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

Techniques.

m IFTE (If-Then-Else function). The defining procedure for FIB1
contains the conditionalfunction IFTE, which can takeits argument
either from the stack or in algebraic syntax. (FIB2 uses the
conditional structure IF ... THEN ... ELSE ... END.)

m Recursion. The defining procedure for FIB1 is written in terms of
FIB1,just as F, is defined in terms of F, _; and F ,, _,.

548 31: More Programming Examples

Program:

&

*n

IFTE(n<1,

MNs

FIB1{n-13+FIB1{n-22)

&

0 FiB1

Checksum: # 41467d

Bytes: 113.5

Comments:

Defines local variable n.

Begins the defining procedure, an
algebraic expression.

Ifn<1...

...thenF, =n...

...else F, =F,_; + F, _,.

Ends the defining procedure.

Enters the program, then stores it in
FIBI.

Example. Calculate F,. Calculate F;, using algebraic syntax.

First calculate Fg.

VAR

1: 8
ITTTTT

Next calculate F,, using algebraic syntax.

(0iFl <™ 10

e 8

lflmmmmmsflg

31: More Programming Examples 549

FIB2 (Fibonacci Numbers, Loop Version)

Arguments Results

Techniques.

m IF..THEN...ELSE...END.FIB2 uses the program-structure form
of the conditional. (FIBI uses IFTE.)

m START.. NEXT (definite loop). To calculate F, , FIB2 starts with F
and F; and repeats a loop to calculate successive F;’s.

Program:

%

*n

Ik

Comments:

Creates a local variable.

Begins the defining procedure, a
program.

Ifn<1...

...then F, =n.

Begins the ELSE clause.

Puts F, and F; on the stack.

From2ton...

... does the following loop:

Makes a copy ofthe latest F (initially
F)).

Moves the previous F (initially Fy) to
level 1.

Calculates the next F (initially F,).

550 31: More Programming Examples

HEXT Repeats the loop.

SWAP DROP Drops F, _;.

EHD Ends the ELSEclause.

Ends the defining procedure.

® Ends the program.

(] FIB2 Enters the program, then storesit in
FIB2.

Checksum: # 51820d

Bytes: 89

Example. Calculate F and Fy,. Note that FIB2 is faster than FIB].

Calculate F,.

1: 8
[EDISP]FIELFIERFIETPHD[PREZE]

Calculate Fy.

rd 8
1: 99
[ELIZP]FIELFIE2FIETPAD[PREZE]

FIBT (Comparing Program-Execution Time)

FIBI calculates intermediate values F; more than once, while FIB2
calculates each intermediate F; only once. Consequently, FIB2 is faster.
The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with n, while the time required for
FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIBI calculating Fy,.
Note the number of intermediate calculations: 1 in the first row, 2 in the

second row, 4 in the third row, and 8 in the fourth row.

31: More Programming Examples 551

Fg/ 10\F8

SN O

IN SN AN AN
FIBT executes the TICKS command to record the execution time of FIB1

and FIB2 for a given value of n.

Arguments Results

3: F,

2: FIB1 execution time:z

1:n 1: FIB2 execution time: z

Techniques.

m Structured programming. FIBTcalls both FIB1 and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

m Interactive programming. FIBT tags each execution time with a
descriptive message.

Program: Comments:

#

Copies n, then executes FIBI,
recording thestart and stop time.

- B+*R 3192 - Calculates the elapsed time, converts
it to a real number, and converts that

number to seconds. Leaves the

552 31: More Programming Examples

"FIB1 TIME"

+TRG

ROT TICKS SWAP FIEBZ

TICKS

SWAP DROP SHAP

- B»R 8192 ~

"FIBZ2 TIME"

*TARG

&

[ENTER] (J FIBT (STOJ

Checksum: # 22248d

Bytes: 135

answer returned by FIB1 in level 2.

Tags the execution time.

Executes FIB2, recording the start
and stop time.

Drops the answer returned by FIB2
(FIBI returned the same answer).
Calculatesthe elapsed time for FIB2
and converts to seconds.

Tags the execution time.

Stores the program in FIBT.

Example. Calculate F;; and compare the execution time for the two
methods.

Select the VAR menu and do the calculation.

13

HOME CH.30 }

233
: FIB1 TIME: 33.8876..
: FIBZ TIME:

. 127875195312
[E0izP]FiELFiEeFIETPho[PRESE]

F,3 is 233. FIB2 takes 0.13 seconds to execute. FIB1 takes 33.9 seconds.
(Your results may differ depending on the contents of memory in your
calculator.)

31: More Programming Examples 553

Displaying a Binary Integer

This section contains three programs:

® PAD is a utility program that converts an object to a string for right-

justified display.

® PRESERVE is a utility program for use in programsthat change the
calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.

It calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an objectto a string and,if the string contains fewer than 23
characters, adds spaces to the beginning.

When a short string is displayed with DISP,it appears left-justified;its first
character appears at the left end of the display. The position of the last
character is determined by the length of the string. By adding spaces to
the beginning of a short string, P4D movesthe position of the last
characterto the right. When the string (including leading spaces) is 23
characters long, it appears right-justified,its last character appears at the
right end of the display. PAD has no effect on strings that are longer than
22 characters.

Arguments Results

1: object 1: "object"

Techniques.

s WHILE ... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

m String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

554 31: More Programming Examples

Program:

&

+5TR

WHILE

DUP SIZE 22 <

REPERT

" " SHAP +

EHD

&

0 PAD [TO]

Checksum: # 38912d

Bytes: 61.5

Comments:

Makes sure the object is in string
form. (Strings are unaffected by this
command.)

Begins WHILEclause.

Doesthe string contain fewer than
23 characters?

Begins REPEAT clause.

Addsa leading space.

Ends REPEAT clause.

Enters the program, then stores it in
PAD.

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, PRESERVE stores the current calculator
(flag) status, executes the program, and then restores the previous status.

Arguments Results

1: « program 1: (result ofprogram)

1: 'program name' 1: (result ofprogram)

31: More Programming Examples 555

Techniques.

m RCLF and STOF. PRESERVE uses RCLF (recallflags) to record the
currentstatus ofthe calculatorin a binary integer and STOF (store
flags) to restore the status from that binary integer.

m Local-variable structure. PRESERVE creates a local variable
structure to remove the binary integer from the stack briefly; its
defining procedure simply evaluates the program argument, then puts
the binary integer back on the stack and executes STOF.

Program: Comments:

&«

RCLF Recalls thelist of two 64-bit binary
integers representing the status of
the 64 system flags and 64 user flags.

+ f Stores the list in local variable f.

% Begins the defining procedure.

EVAL Executes the program placed on the
stack as the level 1 argument.

f STOF Puts the list back on the stack, then

restores the status of all flags.

» Endsthe defining procedure.

»

[] PRESERVE Enters the program, then storesit in
PRESERVE.

Checksum: # 21528d

Bytes: 46.5

PRESERVE is demonstrated in the program BDISP.

556 31: More Programming Examples

BDISP (Binary Display)

BDISP displays a (real or binary) number in HEX, DEC, OCT, and BIN
bases.

Arguments Results

1: #n 1: #n

1: n 1: n

Techniques.

m IFERR... THEN... END (error trap). To accommodate real-
number arguments, BDISP includes the command R—B (real-to-
binary). However, this command causes an errorif the argument is
already a binary integer. To maintain execution if an error occurs, the
R—B command is placed inside an IFERR clause. No action is
required when an error occurs(since a binary numberis an
acceptable argument), so the THEN clause contains no commands.

® Enabling LASTARG.In case an error occurs, LASTARG must be
enabled to return the argument (the binary number) to the stack.
BDISP clearsflag —55 to enable the LASTARG recovery feature.

m FOR...NEXT loop (definite loop with counter). BDISP executes a
loop from 1 to 4, each time displaying n (the number) in a different
base on a different line. The loop counter (named j in this program) is
a local variable. It is created by the FOR ... NEXT program structure
(rather than by a + command) and it is automatically incremented by
NEXT.

®m Unnamed programs as arguments. A program defined only byits «
and » delimiters (not stored in a variable) is not automatically
evaluated;it is simply placed on the stack and may be used as an
argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments.

1. BDISP contains a main program argument and a call to
PRESERVE. This program argument goes on the stack and is
executed by PRESERVE.

31: More Programming Examples 557

2. There are four program arguments that “customize” the action
of the loop. Each program argument contains a command to
change the binary base, and each iteration of the loop evaluates
one of these arguments.

When BDISP creates a local variable for n, the defining procedureis
an unnamed program. However, since this program is a defining
procedure for a local variable structure,it is automatically executed.

Required Programs.

m PAD (page 555) expandsa string to 23 characters so that DISP shows
it right-justified.

m PRESERVE (page 556) stores the currentstatus, executes the main
nested program and restores the status.

Program: Comments:

%

% Begins the main nested program.

LuP Makes a copy of n.

-55 CF Clears flag - 55 to enable
LASTARG.

IFERR Begins error trap.

R+B Converts n to a binary integer.

THEH If an error occurred ...

EMD ... do nothing (there are no
commands in the THEN clause).

+n Creates a local variable n.

% Begins the defining program for the
local variable structure.

CLLCD Clears the display.

« BIM » Writes the nested program for BIN.

558 31: More Programming Examples

% OCT »

% DEC »

% HEX »

1 4

FOR §

EVAL

2 FREEZE

&

FRESERYE

B

0 BDISP

Checksum:

Bytes:

Writes the nested program for OCT.

Writes the nested program for DEC.

Writes the nested program for HEX.

Setsthe first and last counter values.

Starts the loop with counterj.

Executes one of the nested base
programs (initially the one for
HEX).

Makes a string showing n in the
current base.

Pads the string to 23 characters.

Displays the string in the jth line.

Incrementsj and repeats the loop.

Ends the defining procedure.

Freezes the status and stack areas.

Ends the main nested program.

Stores the current status, executes

the main nested program, and
restores the status.

Enters the program, then storesit in
BDISP.

31: More Programming Examples 559

Example. Switch to DEC base, display # 100 in all bases, and check that
BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the current

base is DEC and enter # 100.

(>)(#) 100 [ENTER]

Execute BDISP.

(E0IEP]FIEL |FiE2 |FIET |PHD[PRESE

Return to the normal stack display and check the current base.

ATTN T00TSTTY

Although the main nested program left the calculator in BIN base,
PRESERVE restored DEC base.

To check that BDISP also works for real numbers, try 144.

144 B

[E0ISP]FIELFIER FIET PAD [PRESE

Median of Statistics Data

This section contains three programs:

B SORTorders the elements of a list.

B LMED calculates the median of a sorted list.

® MEDIAN uses SORT and LMED to calculate the median of the

current statistics data.

560 31: More Programming Examples

SORT (Sort a List)

SORTsorts a list of real numbers into ascending order.

Arguments Results

1: { list 2 1: { sorted list %

Techniques.

= Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest numberto the last position in list, then again to move the next
largest to the next-to-last position, and so on.

m Nested definite loops. The outer loop controls the stopping position
each time the processis done; the inner loop runs from 1 to the
stopping position each time the process is done.

m Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining procedure (a program) of
the first. This nesting is done for convenience;it’s easier to create the
first local variable as soon asits value is computed, thereby removing
its value from the stack, rather than computing both values and
creating both local variables at once.

m FOR ... STEP and FOR ... NEXT (definite loops). SORT uses two
counters: — 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each
iteration.

31: More Programming Examples 561

Program:

%«

DUP SIZE 1 - 1

FOR Jj

FOR k

k GETI =+ nl

GETI + n2

DROF

IF nl n2 >

THEHM

k n2 PUTI

nl FUT

EHD

Comments:

From the next-to-last position to the
first position ...

... begins the outer loop with
counterj.

From the first position to the jth
position ...

... begins the inner loop with
counterk.

Gets the kth numberin the list and
stores it in a local variable n;.

Begins the defining procedure (a
program) for the outer local variable
structure.

Gets the next number in the list and

stores it in a local variable n,.

Begins the defining procedure (a
program) for the inner local variable
structure.

Drops the index returned by GETI.

If the two numbers are in the wrong
order...

... then doesthe following:

... puts the second one back in the
kth position;

... puts the kth one back in the next
position.

Ends THEN clause.

562 31: More Programming Examples

Ends inner defining procedure.

» Ends outer defining procedure.

HEXT Increments k and repeats the inner
loop.

-1 STEP Decrements j and repeats the outer
loop.

(] SORT Enters the program, then storesit in
SORT.

Checksum: # 15011d

Bytes: 144

Example. Sort the list { 83125 }.

Select the VAR menu, key in the list, and execute SORT.

 1: {123587
[«8 [5PC) 3 [SPC) T0e)T
1 [SPC] 2 [SPC] 5 [ENTER

LMED (Median of a List)

Given a sorted list, LMED returns the median. If the list contains an odd
number of elements, the median is the value of the center element. If the

list contains an even number of elements, the median is the average value
of the elements just above and below the center.

Arguments Results

1: £ sortedlist * 1: median of sorted list

31: More Programming Examples 563

Techniques.

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a noninteger, FLOOR and CEIL return successive
integersthat bracket the non- integer.

Program:

&«

DUP SIZE

1 +2 7

DuUpP

p FLOOR GET

SWAP

p CEIL GET

+ 2 7

%

®

0 LMED

Comments:

Copiesthe list, then finds its size.

Calculates the center position in the
list (fractional for even-sized lists).

Stores the center position in local
variablep.

Begins the defining procedure (a
program) for the local variable
structure.

Makes a copy ofthe list.

Gets the number at or below the

center position.

Movesthe list to level1.

Gets the number at or above the

center position.

Calculates the average of the two
numbers at or near the center
position.

Ends the defining procedure.

Enters the program, then stores it in
LMED.

564 31: More Programming Examples

Checksum: # 3682d
Bytes: 71

Example. Calculate the median of the list you sorted using SORT.

Put the list on the stack if necessary, select the VAR menu, and execute

LMED.

(©)E3) 1235 8 [ENTER] 1: 3

(VAR] | TG0TTT

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector representing the medians of the columns of the
statistics data.

Arguments Results

1: 13 XX ... %y 1]

Techniques.

m Arrays,lists, and stack elements. MEDIAN extracts a column of data
from EDAT in vector form. To convert the vector to a list, MEDIAN

puts the vector elements on the stack and then combines them into a
list. From this list the median is calculated using SORT and LMED.

The median for the mth column is calculated first, and the median for
the first column is calculated last, so as each median is calculated,it is
moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,
they’re combined into a vector.

m FOR... NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are
calculated in reverse order (last columnfirst), the counter is used to
reverse the order of the medians.

31: More Programming Examples 565

Required Programs.

m SORT (page 562) arrangesa list in ascending order.

m LMED (page 564) calculates the median of a sorted list.

Program: Comments:

%

RCLE Puts a copy ofthe currentstatistics
matrix ZDAT on the stack for
safekeeping.

DUP SIZE Puts the list { n m } on the stack,
wheren is the number of rows in

YDAT and m is the number of

columns.

OBJ» DROF Puts n and m on the stack. Drops the
list size.

Fnm Creates local variables for n and m.

% Begins the defining procedure (a

program) for the local variable
structure.

"ZDAT' TRH Transposes EDAT. Now n is the
number of columns in EDAT and m
is the number of rows. (To key in the
Z character, press [®](Z], then delete
the parentheses.)

1mn Specifies the first and last rows.

FOR Jj For each row, does the following:

E- Extracts the last row in XDAT.
Initially this is the mth row, which
corresponds to the mth column in
the original ¥DAT. (To key in the -
command, press [€][STAT]

566 31: More Programming Examples

0oBJ+ DROP

n *LIST

SORT

LMED

J ROLLD

HEXT

m *ARREY

SLAF

STOZ

&

0 MEDIAN

Checksum: # 19502d

Bytes: 129.5

Puts the row elements on the stack.
Drops the index list { n }, since n is
already stored in a local variable.

Makes an n-element list.

Sorts the list.

Calculates the median of the list.

Moves the median to the proper
stack level.

Incrementsj and repeats the loop.

Combines all the medians into an

m-element vector.

Ends the defining procedure.

Moves the original EDAT to level 1.

Restores ZDATto its previous value.

Enters the program, then storesit in
MEDIAN.

Example. Calculate the median of the following data.

18 12

7

2

1 1

31 48

20 17

There are two columns of data, so MEDIAN will return a two-element

vector.

31: More Programming Examples 567

Enter the matrix.

(](MATRIX]
18 [ENTER] 12 [ENTER] (V]
4 [ENTER] 7 [ENTER]
3 [ENTER] 2 [ENTER]
11 [ENTER] 1 [ENTER]
31 [ENTER] 48 [ENTER]
20 [ENTER] 17 [ENTER]

Store the matrix in XDAT.

[«Q)[STAT):

Calculate the median.

HEDIR

2
?]

1]]
N30))CEIT)EE

[
[
[
[—

£+CLENEW [EDITE

 1: [14.5 9.5 1]
[T0RT(T

The medians are 14.5 for the first column and 9.5 for the second column.

Expanding and Collecting Completely

This section contains two programs:

m MULTI repeats a program until the program has no effect on its
argument.

m EXCO calls MULTI to completely expand and collect an algebraic.

568 31: More Programming Examples

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTI applies the
program to the object repeatedly until the object is unchanged.

Arguments Results

2: object :
1: « program 1: resulting object

Techniques.

m DO... UNTIL... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) orto exit (if
true).

Programs as arguments. Although programs are commonly named
and then executed bycalling their names, programs can also be put
on the stack and used as arguments to other programs.

Evaluation oflocal variables. The program argumentto be executed
repeatedly is stored in a local variable. It’s convenient to store an
object in a local variable when you don’t know beforehand how many
copies youw’ll need.

Recall from page 98 that an object stored in a local variableis simply
put on the stack when the local variable is evaluated. MULTI uses the
local variable nameto put the program argument on the stack and
then executes EVAL to execute the program.

Program: Comments:

&

-+ P Creates a local variablep containing
the program from level 1.

Begins the defining procedure (a
program) for the local variable
structure.

31: More Programming Examples 569

Do Begins the DO clause.

DUP Makes a copy of the object, now in
level 1.

p EVAL Applies the program to the object,
returning a new version.

DUP Makes a copy of the new version of
the object.

ROT Moves the old version to level 1.

UHTIL Begins the UNTIL clause.

SAME Tests whether the old version and the
new version are the same.

EHD Ends the UNTIL clause.

% Ends the defining program.

» Ends the program.

(] MULTI Puts the program on the stack, then

stores it in MULTI.

Checksum: # 34314d

Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

Given an algebraic object, EXCO executes EXPAN repeatedly until the
algebraic doesn’t change, then executes COLCT repeatedly until the
algebraic doesn’t change. In some casesthe result will be a number.

570 31: More Programming Examples

Arguments Results

1: ‘'algebraic' 1: ‘'algebraic'

1: ‘algebraic' 1: z

Techniques.

m Subroutines. EXCO calls the program MULTItwice. It is more
efficientto create program MULTI and simply call its name twice
than write each step in MULTI two times.

Required Programs.

m MULTI (page 569) repeatedly executes the programs that EXCO
provides as arguments.

Program: Comments:

%

4« EXPAH * Puts a program on the stack as the
level 1 argument for MULTI. The
program executes the EXPAN
command.

MULTI Executes EXPAN until the algebraic
object doesn’t change.

« COLCT Puts another program on the stack
for MULTI. The program executes
the COLCT command.

MULTI Executes COLCT until the algebraic
object doesn’t change.

#

(] EXCO Puts the program on the stack, then
stores it in EXCO.

31: More Programming Examples 571

Checksum: # 43008d

Bytes: 65.5

Example. Expand and collect completely the expression:

3x(dy +z)+(8 -52)?

Enter the expression.

 03X XX 1: ;§§§EE4*Y+Z)+(8*}{-5

DXt TT
> 072

Select the VAR menu and start the program.

13 '64%H"2+] 2¥KxY-77%K
*Z+25%2"2!

[TGABTBTR

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

Finding the Minimum or Maximum Element
of an Array

This section contains two programs that find the minimum or maximum
clement of an array:

m MNX uses aDO ... UNTIL ... END (indefinite) loop.

m MNX2 uses a FOR ... NEXT (definite) loop.

572 31: More Programming Examples

MNX (Finding the Minimum or Maximum Element of
an Array—Technique 1)

Given an array on the stack, MNX finds the minimum or maximum
clement in the array.

Arguments Results

2: [larrayll
1: [larrayl] 1: z (maximum element of array)

2: [larrayl]
1: [Larrayll 1: z (minimum element ofarray)

Techniques.

m DO... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag test
that determines whether to repeatthe sort instructions.

m User and system flags for logic control:

m User flag 10 defines the sort: When flag 10 is set, MNX finds the
maximum element; when flag 10 is clear,it finds the minimum
element. You determine the statusof flag 10 at the beginning of
the program.

m Systemn flag - 64, the Index Wrap Indicator flag, determines when
to end the sort. While flag —64 is clear,the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag —64 is automatically set, and the sort loop ends.

m Nested conditional. An IF ... THEN ... END conditional is nested in

the DO ... UNTIL ... END conditional —it determines:

® Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

m The sense of the comparison of elements (either < or >) based

on the statusof flag 10.

m Custom menu for making a choice. MNXbuilds a custom menu that
lets you choose whether to sort for the minimum or maximum
element. Key 1, labeled |HH#%|, sets flag 10. Key 2, labeled

IH ,clears flag 10.

31: More Programming Examples 573

m Logical function. MNX executes XOR (exclusive OR)to test the
combined state of the relative value of the two elements and the

status offlag 10.

Program:

&«

{

IIMHXII

18 SF COHT » 32

"MIN"

18 CF COMT » 2f
o
f
R

THMEHU

"Sort for MAX or MIH?Y

FROMPT

1 GETI

Lo

ROT ROT

GETI 4 ROLL DUPZ2

IF

> 18 FS? HOR

THEH

Comments:

Begins the defining list for the option
menu.

Builds menu keys to set flag
10 and continue program execution,
and ‘to clear flag 10 and
continue program execution.

Ends the defining list for the
temporary option menu.

Displays the temporary menu and a
prompt message.

Gets thefirst element of the array.

Begins the DO loop.

Putsthe index and the array in levels
1and 2.

Gets the new array element, moves
the current minimum or maximum
array element from level 4 to level 1.
Then copies both elements.

Begins the conditional.

Tests the combined state of the

relative value of the two elements

and the statusofflag 10.

If the new elementis either less than

the current maximum or greater than
the current minimum ...

574 31: More Programming Examples

SWAP ... swaps the new elementinto level
1.

END Ends the conditional.

DROP Saves the current minimum or

maximum and drops the other
clement off the stack.

UHTIL Begins the UNTIL clause.

-64 F57? Tests if flag — 64 is set. If flag —64 is
clear, executes the DO clause again.

EHD If flag —64 is set, ends the loop.

SWAP DROP @ MENU Swaps the index to level 1, then
dropsit off the stack. Restores the
last menu.

»

[] MNX Entersthe program, then storesit in
MNX.

Checksum: # 57179d

Bytes: 210.5

Example. Find the maximum element of the following matrix:

12 56

45 1

9 14

Enter the matrix.

(][MATRIX]
12 [ENTER] 56 [ENTER] (V]
45 ([ENTER] 1 [ENTER

9 [ENTER] 14 [ENTER

ENTER

31: More Programming Examples 575

Select the VAR menu and execute MNX.

VAR

Sort for MAX or MIN?

Find the maximum element.

[12 56 1 [45%g

[FN:iC3T01|Z0AT[E0ISP]FIEL]
MNX2 (Finding the Minimum or Maximum Element
of an Array—Technique 2)

Given an array on the stack, MNX2 finds the minimum or maximum
element in the array. MNX2 uses a different approach than MNX;it
executes OBJ— to break up the array into individual elements on the
stack for testing, rather than executing GETIto index through the array.

Arguments Results

2: [CLarrayll
1: [Carrayll 1: z (maximum element of array)

2t [CLarrayll

1: [larrayll 1: z (minimum elementof array)
Techniques.

m FOR ... NEXT (definite loop). The initial counter value is 1. The
final counter value is nm - 1 where nm is the number of elements in
the array. The loop-clause contains the sort instructions.

m Userflag for logic control. User flag 10 defines the sort: When flag 10
is set, MNX2 finds the maximum element; when flag 10 is clear, it

finds the minimum element. You determine the status of flag 10 at the
beginning of the program.

m Nested conditional. An IF ... THEN ... END conditional is nested in
the FOR ... NEXT loop —it determines:

576 31: More Programming Examples

m Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

m The sense of the comparison of elements (either < or >) based
on the status offlag 10.

m Logical function. MNX2 executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

m Custom menu for making a choice. MNX2 builds a custom menu that
lets you choose whether to sort for the minimum or maximum
element. Key 1, labeled sets flag 10. Key 2, labeled

clears flag 10.

Program: Comments:

%

{ Begins the defining list for the
temporary option menu.

£ "MAR" Builds menu keys o set flag
« 18 SF COWT # 3 10 and continue program execution,
£ "MIN® and to clear flag 10 and
« 18 CF CONT » > continue program execution.

¥ Ends the defining list for the option
menu.

THEHU Displays the temporary menu and a
"Sort for MAX or MIN?" prompting message.
PROMPT

DuUP Copies the array.

0BJ» Returns the individual array
elementsto levels 2 through nm +1,
and returns the list containing n and
m to level 1.

1 Sets the initial counter value.

SWAP OBJ+ Converts the list to individual
elements on the stack.

31: More Programming Examples 577

CROP * 1 -

FOR n

DUPZ2

IF

> 18 FS? XOR

THEM

SWAP

EMD

DROFP

HERXT

8 MEMU

w

[ENTER] (] MNX2 (STO]

Checksum: # 12277d

Bytes: 200.5

Drops the list size, then calculates
the final counter value (nm - 1).

Starts the FOR ... NEXT loop.

Saves the array elements to be tested
(initially the last two elements).
Establishes the last array element as
the current minimum or maximum.

Begins the conditional.

Tests the combined state of the

relative value of the two elements

and the status of flag 10.

If the new elementis either less than

the current maximum or greater than
the current minimum ...

... swaps the new elementinto level
1.

Ends the conditional.

Saves the current minimum or
maximum (and dropsthe other
elementoff the stack).

Ends the FOR ... NEXT loop.

Restores the last menu.

Enters the program, then stores it in
MNX2.

578 31: More Programming Examples

Example. Use MNX2 to find the minimum element of the matrix from
the previous example:

12 56

45 1

9 14

Enter the matrix.

(](MATRIX]
12 [ENTER] 56 [ENTER] (V]

45 [ENTER] 1 [ENTER

9 [ENTER] 14 [ENTER

ENTER

Select the VAR menu and execute MNX2.

VAR

Find the minimum element.

2: [0 12561 [451,
mmmmm

Verification of Program Arguments

The two utility programs in this section verify that the argumentto a
program is the correct object type.

m NAMESverifies that a list argument contains exactly two names.

m VFYverifies that the argument is either a name or a list containing
exactly two names. It calls NAMESif the argumentis a list.

You can modify these utilities to verify other object types and object
content.

31: More Programming Examples 579

NAMES (Does the List Contain Exactly Two
Names?)

If the argument for a program is a list (as determined by VFY), NAMES
verifies that the list contains exactly two names. If the list does not contain
exactly two names, an error message is displayed in the status area and
program execution is aborted.

Arguments Results

1: {validlist > 1:

status—-area error message

1: { invalid list » 1:

Techniques.

m Nested conditionals. The outer conditional verifies that there are two

objects in the list. If there are two objects, the inner loop verifies that
they are both names.

m Logical functions. NAMES uses the AND command in the inner
conditional to determine if both objects are names and the NOT
command to display the error message if they are not both names.

Program: Comments:

€

IF Starts the outer
IF.. THEN.. .ELSE.. .END
structure.

0BJ+ Returns the n objects in the list to
levels 2 through (n + 1), and returns
the list size n to level 1.

DUP Copies the list size.

2 SAME Testsif the list size is 2.

580 31: More Programming Examples

THEH

DROP

IF

TYPE & SHME

SWAFP TYPE & SAME

AHD

HOT

THEH

"List nmeeds two namesz"

DOERR

EHD

ELSE

DROFH

"Illegal list size"

DOERR

EHMD

#

0 NAMES

If the list size is 2 ...

... moves the objectsto levels 1 and
2.

Begins the inner IF.. THEN...END
structure.

Tests if the first object is a name. If
so, returns a true result (1). If not,
returns a false result (0).

Moves the second objectto level 1,
then testsif it is a name.

If both results are true, returns a

true result (1). If either or both
results are false, returns a false result

(0).

Returns the opposite result.

If the opposite result is true (if the
objects are not both names) ...

... displays an error message and
aborts program execution.

Ends the inner conditional.

If the list size isnot 2 ...

... dropsthe list size, displays an
error message, and aborts program
execution.

Ends the outer conditional.

Enters the program and storesit in
NAMES.

31: More Programming Examples 581

Checksum: # 40666d

Bytes: 141.5

NAMES is demonstrated in program VFY.

VFY (Verify Program Argument)

Given an argument on the stack, VFYverifies that the argumentis either
a name or a list that contains exactly two names.

Arguments Results

1: 'name'’ 1: 'name'

1: { valid list 1: £ valid list

status—area error message

1: {invalid list 1: £{invalid list »

status—area error message

1: invalid object 1: invalid object

Techniques.

m Utility programs. VFYby itself has little use. However, it can be used
(with minor modifications) by other programs to verify that specific
object types are valid arguments.

m CASE... END (case structure). VFYuses a case structure to
determine if the argumentis a list or a name.

m Structured programming. If the argumentis a list, VFY calls NAMES
to verify that the list is valid.

m Local variable structure. VFY storesits argumentin a local variable
so that it may be passed to NAMES if necessary.

m Logical operator. VFY uses NOT to display an error message.

Required Programs.

m NAMES (page 580) verifies that a list argument contains exactly two
names.

582 31: More Programming Examples

Program:

%«

DUP

DTRG

+ arg

ara TYPE 5 SHME

THEHN

arg NAMES

EHD

ara TYPE & SAME HOT

THEH

"Hot name or list”

DOERE

EMD

EHD

Comments:

Saves the original argument.

Removes any tags from the
argument for subsequenttesting.

Stores the argumentin local variable
arg.

Begins the defining procedure (a
program) for the local variable
structure.

Begins the case structure.

Testsif the argumentis a list.

If the argumentis a list ...

... puts the argument back on the
stack, and calls NAMES to verify that
the list is valid.

Endsthe first case. (If the first case
was true, leaves the case structure. If

the first case was false, goes to the
next case.)

Tests if the argument is a name, then
invertsthe test result.

If the argument is not a name (and
not a list) ...

... displays an error message and
aborts program execution.

Ends the second case.

Ends the case structure.

31: More Programming Examples 583

® Ends the defining procedure.

&

ENTER] [] VFY Enters the program, then storesit in
VFY.

Checksum: # 14621d

Bytes: 1355

Example. Part 1. Execute VFY to test the validity of the name
argument PAT.

Put the name PAT on the stack. Select the VAR menu and execute VFY.

(] PAT 1: '"PAT"
EEEAEESR

The argumentis valid and is simply returned to the stack.

Part 2. Execute VFY to test the validity of the list argument { PAT
DIANA TED }.

Put the names DIANA and TED on the stack. Convert the three names

now on the stack to a list.

() DIANA [ENTER] 1: { PAT DIANA TED }
() TED [0kJ3EG»HER[3LIST]33Th[3Th5)

3 [PRG)

Execute VFY. Since the list contains too many names, the error message is
displayed and program execution is aborted.

VAR

Illegal list size

%:

mmmm
{ PAT DIANA TED }

N

584 31: More Programming Examples

Bessel Functions

3
The real and imaginary parts of the Bessel function J,, (xe *
Ber, (x) and Bei, (x). Whenn = 0,

4 8
Ber(x):l_i'x_zégL+£x4_%L_--.

) are denoted

-10

User-defined function BER calculates Ber(x) to 12 significant digits.

Arguments Results

1:z 1: Ber(2)

Techniques.

m Local variable structure. BER consists solely of a local variable
structure and so has two properties of a user-defined function; it
takes numeric or symbolic arguments from the stack or in algebraic
syntax. Because BER uses a FOR ... STEP loop,its defining
procedure is aprogram. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike a user-defined function, BER is not
differentiable.

31: More Programming Examples 585

m FOR ... STEP loop (definite loop with counter). Successive terms in
the series are calculated with a counter-controlled loop. When the
new term does not change the series value within the 12-digit
precision of the calculator, the loop ends. The final counter value
(9.0 x 10*) ensures that enough terms will be calculated.

m Nested conditional. The IF ... THEN ... ELSE ... END conditional
within the definite loop sets the step value n for the loop counter. As
long as the newly calculated series value does not equal the old series
value,the step value 7 is set to 2. When the new series value does
equal the old seriesvalue, the step value is set to a number larger
than the final value of the counter, ending the definite loop. In
essence, the nested conditional makes the outer loop work like a
DO... UNTIL ... END (indefinite) loop.

Program: Comments:

%

* X Creates local variable x.

% Begins the defining procedure (a
program) for the local variable
structure.

1 Writes the first term of the series.

2 9.E499 Sets the counter for the

FOR ... STEP loop.

FOR j Begins the loop.

DUP Saves the current value ofthe series

(initially 1).

=10iR Calculates the next term of the

(/230 C2%5) series.

SSERICITY EVAL

+ Adds the next term to the current

value of the series to calculate the

new value of the series.

586 31: More Programming Examples

IF

DUP ROT =

THEH

2

ELSE

9. 1E439

EMD

STEF

&

&

[ENTER] (J BER [STO]

Checksum: # 872d
Bytes: 148

Example. Calculate Ber(3).

Begins the conditional.

Tests if the new series value is not

equal to the old series value.

If the new and old values are not

equal...

... specifiesn = 2.

If the new and old terms are equal
(to 12-digit precision) ...

.. specifies n = 9.1E499

Ends the conditional.

Specifies the step value based on the
conditional.

Ends the defining procedure.

Enters the program, then storesit in
BER.

1: -. 22136682496
Ceh[sINTPSETTS]ToAPIE|

1: 751734182714
FEER[INTRIZETTSTon

]

PE

T

-

]

31: More Programming Examples 587

Animation of Successive Taylor’s
Polynomials

This section contains three programs that manipulate graphics objects to
display a sequence of Taylor’s polynomials for the sine function.

m SINTP draws a sine curve, and saves the plot in a variable.

m SETTS superimposes plots of successive Taylor’s polynomials on the
sine curve plot from SINTP, and saves each graphics objectin a list.

m TSA displays in succession each graphics object from the list built in
SETTS.

Drawing a Sine Curve and Converting It to a
Graphics Object

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable.

Arguments Results

Techniques.

® Programmatic use of PLOT commands to build and display a
graphics object.

Program: Comments:

%

'¥' PURGE MakesX a formal variable, then
'SIHCKY ' STER stores the expression for sinx in EQ.

-2 2 YRHG Sets the y-axis display range.

ERASE DRAW Erases PICT, then plots the
expression.

588 31: More Programming Examples

FI

“
b

CT RECL 'SIHT' STO Returns the resultant graphics object
to the stack and storesit in SINT.

(] SINTP Stores the program in SINTP.

Checksum: # 61373d

Bytes: 78.5

Superposition of Successive Taylor’'s Polynomials

SETTS superimposes successive Taylor’s polynomials on a sine curve and
stores each graphics objectin a list.

Arguments Results

Techniques.

Structured programming. SETTScalls SINTP to build a sine curve
and convertit to a graphics object.

FOR ... STEP (definite) loop. SETTS calculates successive Taylor’s
polynomials for the sine function in a definite loop. The loop counter
serves as the value of the order of each polynomial.

Programmatic use of PLOT commands. SETTS drawsa plot of each
Taylor’s polynomial.

Manipulation of graphics objects. SETTS converts each Taylor’s
polynomial plot into a graphics object. Then it executes + to combine
each graphics object with the sine curve stored in SINT, creating nine
new graphics objects, each the superposition of a Taylor’s polynomial
on a sine curve. SETTS then puts the nine new graphics objects, and
the sine curve graphics objectitself, in a list.

31: More Programming Examples 589

Program:

4

SINTP

17 1 FOR

x '®' DUF

SIM SWAP ROT TAYLE

STER® ERRSE DRAL

PICT RCL SIHMT +

-2 STEP

SINT 18 =»LIST

'TSL' STO

&

(ENTER] [J SETTS [STO)

Checksum: # 5841d

Bytes: 136.5

Comments:

Plots a sine curve and stores the

graphics object in SINT.

For each value of local variable x . ..

... plots the Taylor’s polynomial for
the sine curve (where x is the order
of the polynomial).

Returns the plot to the stack as a
graphics object and executes + to
superimpose the Taylor series on the
sine curve stored in SINT.

Decrements the loop counter (the
order of the Taylor’s polynomial) by
2 and repeats the loop.

Putsthe sine curve graphics object
on the stack, then builds a list that

contains that graphics object and the
nine graphics objects created in the
FOR ... STEP loop. Storesthe list in
TSL.

Stores the program in SETTS.

590 31: More Programming Examples

Animation of Taylor’s Polynomials

TSA displays in succession each graphics object created in SETTS.

Arguments Results

Techniques.

m Passing a global variable. Because SETTS takes a long time to
execute (approximately six minutes), 7SA4 does not call SETTS.
Instead, you must first execute SETTS to create the global variable
TSL containing the list of graphics objects. TSA simply executes that
global variable to putthe list on the stack.

®m FOR ... NEXT (definite loop). TSA4 executes a definite loop to
display in succession each graphics object from the list.

Program: Comments:

TsL Putsthe list 7SL on the stack.

0B Puts the 10 graphics objects from the
list and the list count on the stack.

1 SWAFP FOR = For s from1to 10...

ERASE =+LCD ... clears the display, converts the
1 WAIT level-1 graphics object to a display

image, and shows it for one second.

HEXT
5

[] TSA Stores the program in TSA.

31: More Programming Examples 591

Checksum: # 39562d

Bytes: 51

Example. Execute SETTS and 754 to build and display in succession a
series of Taylor’s polynomial approximations of the sin function.

Set Radians mode. Execute SETTS to build the list of graphics objects.
SETTS takes about six minutes to execute. Execute TSA to display each
plot in succession. The display shows 754 in progress.

(©)RAD] (lf necessary)

Programmatic Use of Statistics and Plotting

Program PIE prompts for single variable data, stores that data in the
statistics matrix ©DAT, then draws a labeled pie chart that shows each
data point as a percentage of the total.

Arguments Results

Techniques.

® Programmatic use of PLOT commands. PIE executes XRNG and
YRNGto define x- and y-axis display ranges in user units, executes
ARC to draw the circle, and LINE to draw individual slices.

® Programmatic use of matrices and statistics commands.

m Manipulation of graphics objects. PIE recalls PICT to the stack and
executes GOR to merge the label for each slice with the plot.

m FOR ... NEXT (definite) loop. Each slice is calculated, drawn and
labeled in a definite loop.

592 31: More Programming Examples

m CASE ... END structure. To avoid overwriting the circle, each label
is offset from the midpoint ofthe arc of the slice. The offset for each
label depends on the position ofthe slice in the circle. The CASE ...
END structure assigns an offset to the label based on the position of
the slice.

m Preservation of current calculatorflag status. Before specifying
Radians mode, PIE saves the current flag status in a local variable,
then restoresthatstatus at the end of the program.

® Temporary menu for data input.

Program:

&«

ECLF =+ flags

RAD

{ "SLICE" Z+ 3

L

{ "CLERR" CLZ X

X402

£ "DRAW" COMT >

¥

THEHU

"Keg values into

SLICE,wDREAN

restarts program.

FPROMPT

Comments:

Recalls the currentflag status and
storesit in variableflags.

Sets Radians mode.

Begins the defining list for the input
menu.

Defines key 1. Key 1 executes ©+ to
store each data point in EDAT.

Defines keys 2 and 3. Key 3 clears
LDAT.

Defines keys 4, 5, and 6. Key 6,
labeled ontinues program
execution after data entry.

Ends the defining list.

Displays the temporary menu.

Promptsfor inputs. The = is the
calculator’s representation of the «
character ([*](«])after the
program has been entered on the
stack.

31: More Programming Examples 593

594

ERASE 1 131 XEHG

1 64 YRHMG CLLCD

"Pleaze wait.....=

Drawing Fie Chart"

1 DISP

(66,322 20 B £.23

ARC

PICT RCL =LCD

RCLEZ TOT -

DUF 186 =

+ prcnts

€

2w HUM * * @

+ prop anale

LS

prop SIZE OBJ+

DROP SHAF

FOR =

[T T
|_|

_|
-

i

(&

ar1 STO+

anale COS LASTARG

SIH R=C 28 % OVER +

LIHE

23 prop = GET
1

Erases the current PICT and sets
plot parameters.

Displays “drawing” message.

Executes ARC to draw the circle.

Displays the empty circle.

Recalls the statistics data matrix,
computes totals, and calculates the
proportions.

Converts the proportions to
percentages.

Stores the percentage matrix in
prents.

Multiplies the proportion matrix by
2r.

Stores the proportions inprop and
initializes angle to 0.

Sets up start and finish for
FOR.. .NEXTloop.

Begin FOR clause.

Putsthe center ofthe circle on the
stack and gets the xth value from the
proportion matrix.

Computes the endpoint and draws
the line for the xth slice.

31: More Programming Examples

FICT RCL

anale prop x GET

27 -

cos L

CUP

ASTARG SIH E=C

26 ¥ (66,322 +

SWAF

CASE

1.5

THEHN

LRO

EHD

DUF

THEH

CREO

EHD

1 EHD

*5TRE

DUF

Z

Fl

4.4 £

F 15 -

wEeno g

Recalls PICTto the stack.

Forlabeling the slice, computes the
midpoint ofthe arc of the slice.

Starts the CASE.. .END structure to

determine the offset value for the

label.

From 0 to 1.5 radians ...

... doesn’t offset the label.

From 1.5 to 4.4 radians ...

... offsets the label 15 user units left.

From 4.4 to S radians ...

... offsets the label 3 units right and
2 units up.

Gets the xth value from the
percentage matrix.

Rounds the percentage to one
decimal place.

Converts the percentage to a string
and adds ¥ to the string.

31: More Programming Examples 595

1 +GROE

GOR DUF FPICT STO

+LCD

HEXT

{ > PYIEMW

%

flags STOF

2 MEMU

(ENTER] (J PIE (STO]

Checksum: # 8706d

Bytes: 758.5

Converts the string to a graphics
object.

Addsthe label to the plot and stores
the new plot.

Displays the plot with the new slice
and label.

Displays the finished plot.

Restores the original flag status.

Displays the VAR menu. (Note that
the user mustfirst press to
clear the plot.)

Enters the program and storesit in
PIE.

Example. The fruit inventory at Joe’s grocery includes 983 oranges, 416
apples, and 85 bananas. Draw a pie chart to show each fruit’s percentage
oftotal inventory.

Start PIE.

EPTE

ea values into SLICE
RAW restarts program.

—
=
M
N
W
-
H
R
O
X
]

 (LicE] [ciesk]|[ORAK]

596 31: More Programming Examples

Clear the currentstatistics data. (The promptis removed from the
display.) Key in the new data and draw the pie chart.

CLEAR

66.2%

28«

Animation of a Graphical Image

Program WALK shows a man walking across the display. It animatesthis
custom graphical image by incrementing the image position in a loop
structure.

Arguments Results

Techniques.

® Use of a custom graphical image in a program. (Note that the
programmer derives the full information content ofthe graphical
image before writing the program by building the image interactively
in the Graphics environment and then returning it to the command
line.)

® FOR...STEP definite loop to animate the graphical image. The
ending value for the loop is MAXR.Since the counter value cannot
exceed MAXR,the loop executes indefinitely.

31: More Programming Examples 597

Program:

GEOE 9 15 EZ80

1480156881CE81 486E208

2680C1 18ARBEF4863805

4108220814162280

ERASE { # 84 # Bd >

FYIENW

{ # bd # 254 3

PICT OVER man GHOR

5 MAXE FOR 1

i 131 MOD E=B

254 2 +LIST

FICT OVER man GXOR

FICT ROT man GROR

Comments:

Puts the graphical image of the man
in the command line. (Note that the
hexadecimal portion of the graphics
object is a continuous integer
EZ68. . . 28088. The linebreaks do
not represent spaces.)

Creates local variable man
containing the graphics object.

Clears PICT, then displaysit.

Puts the first position on the stack
and turns on the first image. This
readies the stack and PICTfor the
loop.

Starts FOR.. .STEP loop to generate
horizontal coordinates indefinitely.

Computes the horizontal coordinate
for the next image.

Specifiesa fixed vertical coordinate.
Puts the two coordinatesin a list.

Displays the new image, leaving its
coordinates on the stack.

Turns off the old image, removing its
coordinates from the stack.

31: More Programming Examples

5 STEP Increments the horizontal coordinate

by 5.

»

»

[] WALK Stores the program in WALK.

Checksum: # 4342d
Bytes: 236.5

Example. Send the man outfor a long walk.

Select the VAR menu and execute WALK.

&

When he tires, press to take him home (and end the program).

31: More Programming Examples 599

Part5

Printing, Data Transfer, and
Plug-Ins

32

Printing

This chapter describes how to use your HP 48 with an HP 82240B
Infrared Printer, with an HP 82240A infrared printer, and with printers
that connect to the serial port.

Printing with an HP 82240B Printer

You can send information from your HP 48 to an HP 82240B Infrared
Printer via the infrared port. Refer to the printer manual for instructions
about how to operate the printer and how to position the printer relative
to the HP 48.

602 32: Printing

PRINT Commands

Keys Programmable Description
Command

When and are pressed
simultaneously and then released, the
current display is printed.

(] [PRINT PR1 Prints the object in level 1.

[(«2)[PRINT]:

PR1 Prints the object in level 1.

PRST Prints all objects on the stack starting
with the object in the highest level.

PRSTC Prints all objects on the stack in
compact form, starting with the object
in the highest level.

PRLCD Prints the current display.

PRVAR Searches the current path for the
specified variables, and prints the name
and contents of each variable. The
variables are specified either by name
orinalistinlevel 1.

CR Causes printer to do a carriage-
return/line-feed, printing the contents,if

any, of the printer buffer.

DELAY Sets the delay time, < 6.9 seconds,
between sending lines of information to
the printer.

OLDER OLDPRT Remaps the HP 48 character set to the HP 82240A Infrared Printer.

32: Printing 603

Print Formats

Multiline objects can be printed in multiline format or compact format.
Multiline printer format is similar to multiline display format, with the
following exceptions:

® Strings and names that are more than 24 characters long are
continued on the next printer line.

® The real and imaginary parts of complex numbersare printed on
separate lines if they don’t fit on the same line.

® Arrays are printed with a numbered heading for each row and with a
column number before each element. For example,the 2 X 3 array

[1 23]
456

would be printed like this:

Array dimensions

Row Arrag { 2 3 2
number3 Fow 1

Col 111
olumn 21 2

number =7 =

Row 2
11 4
21 5
21 6

Compact printer format is the same as compact display format: Multiline
objects are truncated and appear on one line only.

The PRSTC command prints the stack in compact form. All other print
commands print in multiline format.

604 32: Printing

Basic Printing Commands

Printing the Display. To print an image of the display under any
condition without using the PRINT menu:

1. Press and hold [ON].

2. Press and release (the key with “PRINT” written above it).

3. Release [ON].

A low-battery condition may result in consistent failure of
the printing procedure. If you notice consistent

Note failure, replace your calculator batteries to remedy the
situation.

The PRLCD command ([$q)(PRINT] FFl

display.
) also prints an image of the

* These keystrokes use the current DELAY setting. Also,if you are printing to the serial
port to capture graphics data on your printer, the serial port must be open (the
OPENIO command) before these keystrokes are executed.

32: Printing 605

Printing the Contents of Level 1 of the Stack. PR1 ([«q](PRINT]
prints the contents of level 1 in multiline printer format. All

objects except strings are printed with their identifying delimiters. Strings
are printed without their " delimiters. PR1 can be executed also by
pressing [*][PRINT].

the stack, starting with the object in the highest level, in multiline printer
format (except for graphics objects, which print the same as they are
displayed).

PRSTC ([€][PRINT] EFZTL) prints all objects on the stack, starting with
the object in the highest level, in compact printer format.

Printing Variables. PRVAR ([€][PRINT] | *) searches the
current path for the variables that you have specified, and prints the name
and contents of each variable in multiline printer format. PRVAR takes
one argument from the stack: either one name ora list containing one or
more names. (PRVAR also prints backup objects.)

Printing a Text String

You can print any sequence of characters by entering a string object that
contains the characters and executing PR1. The printer prints the
characters without the quotation marks and leaves the print head at the
end of the print line. Subsequent printing begins on the next line.

Printing a Graphics Object

Like other objects, you can print a graphics object either by putting the
graphics object in level 1 and executing PR1, or,if the graphics objectis
stored in a variable, by entering the variable name and executing PRVAR.
Graphics objects wider than 166 dot columns are printed in 166-column
wide segments down the paper, separated by a dashed line. For example,
a 350-column wide graphics object would be printed in two 166-column
segments and one 18-column segment.

606 32: Printing

Double Space Printing

To select double-space printing (one blank line between lines), set flag
-37. To return to single-space printing, clear flag —37.

Setting the Delay

The DELAY command lets you specify how long the HP 48 waits between
sending lines of information to the HP 82240B Infrared Printer. DELAY
takes a real number from level 1 that specifies the delay time in seconds.
If you do not specify a delay,it is automatically set to 1.8 seconds. The
maximum delay is 6.9 seconds.

A shorter delay setting can be useful when the HP 48 sends multiple lines
of information to your printer (for example, when printing a program).
To optimize printing efficiency,set the delay just longer than the time the
printhead requires to print one line of information.

If you set the delay shorter than the time to print one line, you may lose
information. Also, as the batteries in the printer lose their charge, the
printhead slows down, and,if you have previously decreased the delay, you
may have to increase it to avoid losing information. (Battery discharge
will not cause the printhead to slow to more than the 1.8 second default
delay setting.)

The HP 48 Character Set

Thetable in appendix C lists each HP 48 character and its corresponding
character code. Most of the characters in the table can be directly typed
into the display from the Alpha keyboard. For example, to display #,
type (@] [\1)(4). (The Alpha keyboard is presented in chapter 2.) Any
characterin the table can be displayed by typing its corresponding
character code and then executing the CHR command. The syntax is
char# CHR. Certain charactersin the table in appendix C are not on the
Alpha keyboard. To display one of these characters, you must type its
character code and execute CHR.

The HP 82240B Infrared Printer can print any character from the HP 48
characterset.

32: Printing 607

Sending Escape Sequences and Control Codes

You can select various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character— character
27— followed by additional characters. When the printer receives an
escape sequence,it switchesinto the selected mode. The escape sequence
itself isn’t printed.

Printer owner’s manuals generally describe the escape sequences and
control codes recognized by the printer.

Use CHR and + to create escape sequences and use PR1 to send them to
the printer.

Example. These characters send information to the HP 82240B printer
to turn on Underline mode, underline the string HELL{, and then turn
off Underline mode:

27 CHR 251 CHR + "HELLO" +

27 CHE + 258 CHR + FR1

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a single
print line by accumulating datain the printer’s buffer.

Normally, each print command completes data transmission by
automatically executing the CR (carriage right) command, which tells the
printer to do a carriage-return/line-feed. Then the printer prints the data
currently in its buffer and leaves the print head at the right end of the
print line.

You can disable the automatic execution of the CR command by setting
flag —38, the Line-feed flag. Data from subsequent print commandsis
accumulated in the printer buffer and is printed only when you manually
execute CR. When flag -38 is set, follow these three rules:

u Execute CR ([\9)[PRINT] ; to print the accumulated data.
(Alternately, send character 4 or character 10.)

® Print the data in the buffer before you accumulate more than 200
characters. Otherwise, the buffer fills up and subsequent characters
are lost.

608 32: Printing

® Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

Clear flag —38 to restore normal operation of the print commands.

Printing with an HP 82240A Infrared Printer

You can use your HP 48 calculator with an HP 82240A Infrared Printer,
executing the same print commands that you would use for an
HP 82240B. However, the character set in the HP 82240A Infrared
Printer does not match the HP 48 character set:

m 24 characters in the HP 48 character set are not available in the
HP 82240A Infrared Printer. (From the table in appendix C, these
characters are numbers 129, 130, 143-157, 159, 166, 169, 172, 174, 184,

and 185.) The HP 82240A prints a ¥ in substitution.

® Many characters in the extended character table (character codes 128
through 255) do not have the same character code. For example, the
« character has code 171 in the HP 48 and code 146 in the
HP 82240A Infrared Printer. If you want to use the CHR command
to print extended characters with an HP 82240A Infrared Printer, first
execute OLDPRT. OLDPRT adds a remap string to the PRTPAR
variable, which changes the character code of each byte to match the
codes in the HP 82240A Infrared Printer character table. (If you
want to print a string containing graphics data, OLDPRT must not be
in effect.)

If you executed OLDPRT to print with an HP 82240A Infrared Printer,
and then want to print to an HP 82240B Infrared Printer, you should first
purge the reserved variable PRTPAR. (You can first copy its contents to
another variable if you want to save the settings for later use.) This resets
the print parameters so that the character set matches the HP 82240B.
(PRTPAR is described on page 611.)

32: Printing 609

Printing to the Serial Port

You can print to a serial printer via the HP 48 serial port. Once the
HP 48 is connected to the printer:

1. Set flag —34, the Printing Device flag.

2. Check that flag —33, the I/O Device flag is clear. (The default is
clear.)”

3. Set the HP 48 baud rate,parity, and translation code appropriately
for your printer. These can be set using the I/O SETUP menu,
described on page 617.

4. If your printer uses XON/XOFF handshaking, edit (or create)
IOPAR to set transmit pacing # 0. The reserved variable JOPAR is
described on page 618.

5. If the number of characters thatfit on one line on your printer is
not 80, edit PRTPAR to contain the correct number as the third

elementin its list. (See the next section for information on
PRTPAR.)

6. If your printer requires a line termination sequence other than
carriage-return/line-feed, edit PRTPAR to contain that sequence as
the fourth element in its list. The reserved variable PRTPAR is
described in the following section.

You can execute any of the print commands described in this chapter with
a serial printer. However, note that:

® The maximum line length to print is specified in the reserved variable
PRTPAR (described next).

= You cannotprint a graphics object.

* Setting both flags -33 and -34 would enable infrared serial data transmission. Printing
with an HP 82240B Infrared Printer when these flags are set will not work—the
HP 82240B would likely print blots.

610 32: Printing

The PRTPAR Variable

When youfirst print information with a command from the PRINT menu,
the HP 48 automatically creates the PRTPAR variable. PRTPAR is a
reserved variable containing a list that specifies how the HP 48 works with
the printer. The list contains, in order, the following objects:

m A real number that specifies the delay time, in seconds. If you have
not previously executed DELAY,the delay time is automatically set to
1.8 seconds in PRTPAR.

m A string that represents the current remapping of the HP 48 extended
character set. The string can contain as many characters as you want
to remap, with the first character in the string being the new
character 128, the second being the new character 129, and so on.
(Any characters outside the string length will not be remapped.) If
you have not previously executed OLDPRT, the string is empty; if you
have executed OLDPRT,the string contains the character remapping
for the HP 82240A Infrared Printer.

m A real number that specifies the line length, in number ofcharacters,
for serial printing. This parameter does not affect infrared printing.
The defaultis 80 characters.

m A string that representsthe line termination method for serial
printing. This parameter does not affect infrared printing. The
default is carriage-return /line-feed (control characters 13 and 10).

You can edit any parameterin the list. The delay time, however, can be
set more easily using the DELAY command: Enter the delay number (6.9
or less) on the stack and execute DELAY ([+q][PRINT] D .

32: Printing 611

33

Transferring Data to and from the
HP 48

This chapter covers:

m Transferring data from one HP 48 to another using the infrared port.

m Transferring data between the HP 48 and a computer using the serial
port. (Forthis operation, you need the Serial Interface Kit
appropriate for your computer. For more information, see your
Hewlett-Packard dealer.)

m Other serial I/O operations.

The HP 48 uses Kermit file transfer protocolto transfer data and to
correct transmission errors between two HP 48 calculators, or between an

HP 48 and a computer. Kermit protocol was developed at the Columbia
University Center for Computing Activities.

The calculator commands needed to accomplish Kermit data transfer are
built into the HP 48. Therefore, you can transfer data from one HP 48 to
another by simply lining up the two infrared ports and executing the
proper commands, which are described in this chapter.

To transfer data to and from a computer, the computer must be running a
program that implements Kermit protocol. Also, there must be a cable
connecting the HP 48 and the computer. Details about the cable
connection are covered later in this chapter. (Kermit protocol and a

612 33: Transferring Data to and from the HP 48

special serial cable are required for this operation and are available from
your Hewlett-Packard dealer as part of a Serial Interface Kit to match
your computer.)

If you want additional information on Kermit protocol, a book by Frank
da Cruz, KERMIT, A File Transfer Protocol, is available in many
bookstores or can be ordered.

The HP 48 provides additional serial I/O commands for non-Kermit data
transfers. These commands are for specialized I/O operations— for
example, printing directly from the HP 48 to a serial printer.

Types of Data You Can Transfer

The unit of information that is transferred using Kermit protocolis called
afile. In the HP 48 world, a file can consist of:

® A named object (variable, backup object, etc.).

® An entire directory. When you transfer a directory, the contentsof all
the subdirectories under that directory are also transferred.

m All of user memory— all the variables you’ve created, the user-key
assignments, and the Alarm Catalog,.

In all cases, a copy ofthe data is sent to the receiving device and stored as
a file (variable) in the currentdirectory.

When you transfer a directory or all of user memory between an HP 48
and a computer, the datais sentas a single file, and you cannot
conveniently access the contents of the individual variables in thatfile.
Forthis reason, a directory transfer to a computer should be done mainly
for archiving purposes. When the purpose of a file transfer is to use the
file at its destination (for example, to edit a program on your computer),
you should transfer the contents of the individual variable. If you put the
variable names in a list and use the SEND command to transfer the data,

the variables can then be accessed individually.

* da Cruz, Frank. 1987. KERMIT, A File Transfer Protocol. Bedford, MA: Digital Press.

33: Transferring Data to and from the HP 48 613

When you transfer a directory from one HP 48 to another,it is installed in
the destination machine as a normal directory. This means that it can be
manipulated just like other directories and its variables are all accessible.
Transferring a directory from one HP 48 to anotheris a good way to
transfer a set of related objects— for instance, a set of programs,
variables, printer configurations, etc. —all ready to be used together by
the destination HP 48.

The 1/0 Menu

The commands for Kermit protocol and serial operations are contained in
the I/O menu. The serial commands are covered at the end of the
chapter.

Kermit Protocol Commands

Keys Programmable Description
Command

(«1](i/9] (pages 1 and 2):

SEHD SEND Sends the contents of one or more

variables to another device. SEND
takes an argument from level 1 —the

variable name, ora list of names
{ name;name, (Seethe
paragraph immediately following this

table for more information.)

RECV Tells the HP 48 to wait to receive a
variable from another Kermit protocol

device.

SERVER Puts the HP 48 into Kermit Server
mode. (Also executed by pressing

(]0/9))

614 33: Transferring Data to and from the HP 48

Kermit Protocol Commands (continued)

Keys Programmable
Command

Description

KGET

FINISH

RECN

PKT

KERRM

OPENIO

CLOSEIO

Gets one or more variables from a
server device. KGET takes an
argument from level 1 —the name of

the requested variable, ora list of
names {name;name,... . (See
the paragraph immediately following
this table for more information.)

Issues the Kermit FINISH command to

a server device to terminate Server

mode.

Displays the SETUP menu for setting
1/O parameters.

Same as except that it takes
a name argument. The received file is
stored using that name.

Provides the ability to send a Kermit
command “packet” to a server. It
takes the packet data field as a string
in level 2 and the packet type as a
string in level 1. For example,
"' "G" PKT sends a “generic
directory” command.

Returns the text of the most recent

Kermit error.

Opens the serial port using the 1/0
parameters in /OPAR.

Closesthe serial port, clears KERRM,

and clears the input buffer.

33: Transferring Data to and from the HP 48 615

You can also use SEND and KGET to rename a variable when it’s
transferred by including a sublist for that variable in the main list. The
first element in the sublist is the existing variable name and the second
elementis the new name. For example, executing the SEND command
with the list { {name, name,} name; name, } as an argument would
result in name; and name, being sent under their own names and name,
being sent under the new name of name,.

Local and Server Modes

There are two Kermit protocol configurations for transferring data from
an HP 48 to another HP 48 or computer:

m Local/Local. Both machines are controlled locally from their own
keyboards, and Kermit commands can be issued by either machine.
Data is transmitted by issuing a SEND command from the sender’s
keyboard and a RECV or RECN command from the receiver’s
keyboard.

m Local/Server. One machine is controlled locally and the other
machine is a server. The server passively waits for instructions or data
from the sender. A server:

B Receives data when a sender executes a SEND command.

8 Transmits data when it receives a KGET command.

m Ceases to be a server whenit receives a FINISH command.

Local/Server mode is most useful when you wish to transfer a number of
variables from different directories; the local device can issue repeated
“send” or “get” commands to which the server responds.

616 33: Transferring Data to and from the HP 48

Setting the 1/0 Parameters

The SETUP Menu

Pressing § - displaysthe current I/O parameter settings and a menu
for changing them. If the displayed settings are overwritten by the stack
or other information, press [q)[REVIEW] to redisplay them.

SETUP Menu

Keys Programmable Description
Command

(«)(I/9] §

BAUD

PARITY

Switches between IR (infrared) and
Wire (serial) modes. In IR mode, I/0
outputis directed to the infrared port.
In Wire mode, 1/0 output goesto the
serial port.

Switches between ASCII and binary
transmission modes (see page 629).

Steps through 1200, 2400, 4800, and
9600 baud. The default transfer rate is

9600 baud.

Steps through odd (1), even (2), mark
(3), space (4), and no (0) parity. The
default is no parity.

33: Transferring Data to and from the HP 48 617

SETUP Menu (continued)

Keys Programmable Description
Command

EBEsH CKSM Steps through checksum (error
detection) options. The CKSM set is
the type of checksum requested when
initiating a SEND. Choices are 1 (1-
digit arithmetic checksum), 2 (2-digit
arithmetic checksum), and 3 (3-digit
cyclic redundancy check, or CRC).
The default is 3; IR transmissions
should use 3.

STRAH TRANSIO Steps through the character translate

code options. Choices are 0 (no
translation), 1 (translate character 10
to characters 13 and 10), 2 (translate
characters 128 through 159), or 3
(translate characters 128 through
255). The defaultis 1. (See page 626
for more information.)

The BAUD, PARITY, CKSM, and TRANSIO commands can be used in

programs by preceding the command with the number representing the
appropriate choice.

The IOPAR Variable

The reserved variable IJOPAR stores the I/O parameters needed to
establish a communications link with a computer. JOPAR contains a list
consisting of these elements:

{ baud parity receive-pacing transmit-pacing checksum
translate-code

618 33: Transferring Data to and from the HP 48

IOPAR is created in the HOMEdirectory thefirst time you transfer data
or open the serial port (JFEHT). It is automatically updated whenever
you change the settings using the commands in the I/O SETUP menu.

The Parity Setting. If the parity setting is positive,it is used on both
transmit and receive. If it is negative,it is used only on transmit, and
parity is not checked during receive. The menu key - steps
through only positive choices, but you can make the parity negative by
putting the negative parity number on the stack, keying in the command
PARITY, and pressing (ENTER]. You can also edit JOPAR, which contains
the current I/O parameter settings, to make the parity element negative.

Receive Pacing and Transmit Pacing. Receive pacing and transmit
pacing are not used by Kermit protocol. They can, however, be used in
other serial I/O transfers— for instance, printing with a serial printer. A
non-zero value for receive pacing causes the HP 48 to send an XOFF
signal when its receive buffer is getting full, and then an XON signal when
it can take more data. A non-zero value for transmit pacing causes the
HP 48 to stop transmitting if it receives an XOFF signal and wait for an
XON signal to continue. The default settings for both these JOPAR
elements is 0, which means “don’t send XON/XOFF signals, and ignore
any that are received.”

Transferring Data between Two HP 48’s

Before beginning the transfer:

1. On the sender, switch to the directory where the variables are
located. Use the IO SETUP menuto set IR and binary transfer
modes and to set the CKSM to 3.

2. On the receiver, use the IO SETUP menu to set IR transfer mode.

Then, switch to the directory to which you want the data sent.

33: Transferring Data to and from the HP 48 619

3. Line up the infrared ports bylining up the A marks (near the
Hewlett-Packard logo just above the display). The calculators
should be no farther apart than 2 inches.

To transfer data using the local/local configuration:

1. On the receiver, do either of the following:

m Execute RECV ([«q](I/0]
the name given by the sender.

to store the variable under

m If you want to change the variable name, enter a new name and
execute RECN ([\1](1/0] FEC When the object is
received,it will be stored using that name.

2. On the sender, enter the name of the vanable or directory to be
sent and execute SEND ([¥](I/0] . (Forvariables in the
same directory, you can entera list of variables and SEND them all
at once.)

3. To transfer additional variables or lists of variables, repeat the
previous two steps.

To transfer data using the local/server configuration:

1. On the HP 48 that will be the server, execute SERVER([2](1/0] or

(«)[/0) SERYE).

620 33: Transferring Data to and from the HP 48

2. On the other, “locally controlled” HP 48:

® To send a file to the server, enter the variable name and

execute SEND ([\q)(1/0]). (To send the variable using
a different name, or to send several variables from the same

directory, use a list argument as described on page 616.)

m To receive a file from the server, enter the variable name and

execute KGET ([q] (To have the variable
stored locally using a diffe ame,or to receive several
variables together, use a list argument as described on page
616.)

3. To transfer additional variablesor lists of variables, repeat step 2.

4. To end the session, execute FINISH ([€](1/0] |
locally controlled machine.

on the

Transferring Data between a Computer and
the HP 48

There are many reasons to transfer information between a computer and
your HP 48—you might want to back up all of your calculator’s user
memory; you might want to edit a calculator program on your computer;
or you might wantto write a program on your computer and then run it
on your calculator. Whatever the reason, the first step involves making a
physical connection.

Cable Connection

Before transferring data between a computer and your calculator, you
must connect the HP 48 to the computer via the serial cable in the Serial
Interface Kit for your computer. (If you need information on what Serial
Interface Kitis right for your computer, orif you don’t have an Interface
Kit, see your HP dealer.)

1. Connect the computer end of the serial cable to the serial port on
the computer. (If you need instructions for this, consult your
computer documentation.)

33: Transferring Data to and from the HP 48 621

2. With the calculator right-side up and the HP logo on the cable
connector facing up, connect the cable to your calculator. You
should feel the connector lightly snap into place.

Not quite flush

Note that when the cableis fully connected, the case around the
connectoris not quite flush with the calculator case.

Transferring Data

Before beginning the transfer:

1. On the HP 48, display the I/O SETUP menu ([\)(i/0) SETUF)
and read the status message. If necessary:

m Set Wire transmission mode by pressing

m Select ASCII or Binary transmission mode by pressing
ABCIT. (See page 629 for guidelines on selecting the mode to
use.)

m Set the HP 48 transfer rate by pressing :
matches the rate expected by the Kermit program running on
the computer.

m Set the HP 48 parity by pressing FHFEIT until it matches the
parity expected by the Kermit program running on the
computer.

m Set the checksum (CKEH) —type 1 is the fastest—and set the
character translate code (TEAH). (See page 618 for

guidelines on what translate code settingsto use.)

622 33: Transferring Data to and from the HP 48

2. On both the HP 48 and the computer, switch to the directory where
the variables (files) are located and to the directory to which you
want the variables (files) sent.

3. Open he HP 48 serial port by executing OPENIO ([\q](i/0] [NXT]
This step is not necessary for most connections, but it will

prevent difficulties caused by the inability of certain devices to
communicate with a closed port.

4. Run the program on the computer that implements Kermit
protocol. If you are transferring data in binary mode, and if the
Kermit program on the computer has a binary mode setting
command, you should execute it on the computer.

To transfer data using the local/local configuration:

1. On the receiver, issue the “receive” command:

m If the HP 48 is the receiver, execute RECV ([€](i/0]
or enter a varlable name and execute RECN

(RJ09) (NxT)
m If the computeris the receiver, issue the command on the

computerto receive a file.

2. On the sender,issue the “send” command:

m If the HP 48 is the sender, key in the argument (variable name
or variable list as described on page 616) and execute SEND

(=00 ¢
m If the computer is the sender,issue the command on the

computer to send a file.

3. To transfer additional variables or variable lists, repeat steps 1 and
2.

4. Optional: To conserve battery power, execute CLOSEIO ([(q](1I/0]
*) when finished.

33: Transferring Data to and from the HP 48 623

To transfer data using local/server configuration:

1. If your computer will be the server, make sureit is able to execute
the Kermit “server” command.

2. Set server operation on the device that will act as server:

m If the HP 48 is to act as server, execute SERVER ([*](I/0] or

(«J0/9))-

m If the computer is to act as server, execute the command on the
computer to makeit the server.

3. On the locally controlled device:

m To send a file to the server,issue the appropriate “send”

sender.)

m To receive a file from the server,issue the appropriate “get”
command. (See on page 615 if the HP 48 is the
receiver.)

4. To transfer additional variables, repeat step 3.

5. To end the session, execute the “finish” command on the locally
controlled machine. (If the HP 48 is locally controlled, press

(«)(/0])
6. Optional: To conserve battery power, execute CLOSEIO ([«q](1/0]

ELUEE) on the HP 48 whenfinished.

Backing Up All of HP 48 Memory

The ARCHIVE and RESTORE commands provide the ability to back up
all variables, user key assignments, and alarms in calculator memory onto
your computer.

624 33: Transferring Data to and from the HP 48

To backup all of user memory:

1. Follow the instructions in “Before Beginning the Transfer” on page
622.

2. Enter the object : I0:name, where name is the file name that will
contain backed up memory. For example, : I10:AUG1 will back up
memory into a file namedAUG]I.

3. Issue the Kermit RECEIVE command on the computer.

4. Execute ARCHIVE ([$](MEMORY] | to send
the data to the PC. (Regardless of the ASCII/binary setting,
ARCHIVE uses binary transmission.)

To copy backed up user memory into the HP 48:

” Use the RESTORE command with care; restoring backed
: up user memory completely erases current user memory

Caution and replaces it with the backup copy.

1. Follow the instructions in “Before Beginning the Transfer” on page
622.

2. Transfer the computerfile to the HP 48 the same way you transfer
any otherfile.

3. Place the nameof thefile on the stack (for example, 'AUG1') and
press [@](RCL). This recalls Eackup HOMEDIR to level 1.

4. Exccute RESTORE([[MENMORY] T0).

If you want your current flag settings archived when you back up all of
memory, execute RCLF and store the result in a variable before you
archive memory. Then, after you archive and restore memory, you can
recall the contents ofthe variable and execute STOF to make the flag
settings active again.

33: Transferring Data to and from the HP 48 625

Character Translations (TRANSIO)

The HP 48 character set contains certain characters that cannot be
displayed using most computer software packages. These characters fall
into two groups:

® Characters with “character numbers” in the range 128 through 159
cannot be displayed without special software designed to support the
HP 48.

m Characters with character numbers in the range 160 through 255 can
be displayed by computer software that supports the ISO 8859
characterset.

The translate code lets you choose what happens to these characters when
they are transmitted from the HP 48 to a computer. You set the translate
code using the TRANSIO command. (See in the table on page
618 for a description of the four translate codes.)

The following table shows the conversions for many of the characters with
numbers above 127. For characters not in the table, the conversion is to
~)00X, where X0 is the three-digit character number.* This conversion
makes it possible for you to use your computer editorto type and display
these characters.

* You can also use this conversion for characters in the table and for characters 0 through
127, making it easier to edit in control characters or in an escape sequence on your
computer. The HP 48 will not generate the xxx sequences,but it will recognize them.

626 33: Transferring Data to and from the HP 48

1/0 Character Translations

Char. HP 48 PC Char. HP 48 PC
Number Char. Char. Number Char. Char.

128 A \<) 147 € \Ge

129 x \X- 148 n \Gn

130 v \V 149 6 \Gh

131 Vv \v/ 150 A \GI

132 f \.S 151 p \Gr

133 z \GS 152 o \Gs

134 » \|> 153 T \Gt

135 T \pi 154 w \Gw

136 d \.d 155 A \GD

137 < \<= 156 II \PI

138 > \>= 157 0 \GW

139 # \=/ 158 u \[]
140 a \Ga 159 00 \oo

141 — -> 171 « \<<

142 - \<- 176 ° ~o

143 ! \|v 181 b \Gm

144 1 Nis 187 » \>>

145 5 \Gg 215 X \.x

146 6 \Gd 216 o \O/

247 + \:-

To avoid any ambiguity during translation and reverse translation:

m When datais transferredfrom the HP 48 with a translate code of 2 or
3, any occurrence of the . characteris replaced by ~. For example,
A~->E is translated to A~*—>E. This prevents the reverse
translation to A+E when the data is transmitted back to the HP 48.

33: Transferring Data to and from the HP 48 627

m When datais transferred to the HP 48 with a translate code of 2 or 3,
character sequences beginning with * are unchanged unless any of
the following;

m They match a sequencein the table.

m The . is followed by three decimal digits in the range 000
through 159 for translate code 2.

m The - is followed by three decimal digits in the range 000

through 255 fortranslate code 3.

For example, “~Gaand ~215 are translated to « and x,
respectively, but ~Gx and 267 are not translated.

More About File Names

In general, the file naming conventions for computersare different than
the name requirements for HP 48 variables. When a file is transferred
from a computer to the HP 48,the following difficulties may arise due to
the computerfile name:

m The file name contains characters not allowed in a variable name—
for example, AE# or £{AECZ. In this case, the HP 48 terminates the
transfer and sends an error message to the computer.

m The file name matches a built-in command—for example, SIH or
DUP. In this case, the HP 48 appends a number extension to the
name—for example, SIH. 1.

® The name matches a variable namein the current directory. In this
case, to avoid overwriting your variable a number extension is added
to the name. (However,if flag —36 is set, the variable will be
overwritten.)

Also, an HP 48 file can have a namethatis incompatible with the name
requirements of the computer software. Transferring such a file can
result in a transfer error.

Always check the filenames before a transfer to make sure they are
compatible with the receiving system’s requirements. If they are not
compatible, change the names appropriately.

628 33: Transferring Data to and from the HP 48

Errors

Executing the KERRM command ([$] (/0] ERR
text of the most recent Kermit error packet.

displays the

ASCII and Binary Transmission Modes

The HP 48 Kermit protocol provides two transfer modes—ASCII and
Binary. To get the fastest transfers, you generally should use Binary mode
to transfer data from one HP 48 to another, and ASCII mode to transfer
data between the HP 48 and a computer.

A receiving HP 48 treats all files as ASCII unless they match the special
encoding generated for HP 48 binary files. The calculator will
automatically switch to binary receive mode forfiles with this encoding.

ASCII Mode. You rmust use ASCII modeif you wantto display, edit, or
print your HP 48 file using a computer.

When data is sent from the HP 48 to a computer in ASCII mode:

m The data is converted from its internal HP 48 format to a sequence of
characters.

m If the translate code is set to 1, 2, or 3, all line-feed (LF) characters
are converted to carriage-return/line feed sequences (CR/LF).

m If the translate code is set to 2 or 3, some or all of the characters with

character numbers greater than 127 are translated into displayable
character sequences.

m The character sequence =%HF: modes ; is added at the beginning

of the data, where modesis a series of characters that describes
certain calculator mode settings— the translate, angle, and fraction-
mark settings —when the transfer occurred. When this sequence is
present, you don’t haveto set the corresponding modes on the
receiving HP 48 when you send the data back.

When data is received by the HP 48 using ASCII mode:

m The data is translated (compiled) into the HP 48 internal format.

m If the translate code is set to 1, 2, or 3, all CR/LFs are converted to

LFs.

33: Transferring Data to and from the HP 48 629

m So that the receiving calculator can accurately reconstruct the object
being sent by the computer, any modes specified at the beginning of
the data are set temporarily in the calculator for the duration of the
transfer. If a modeis not specified, the receiving calculator usesits
current mode setting.

If you created data (a program, for instance) on your computer, or if
you substantially changed data that originally came from your
calculator, you may need to include at the beginning of the data the
characters **HF: modes 3, where modes is a series of
characters—T(), A(), and/or F() —representing the translate code,
angle mode, and/or fraction mark. Inside the parentheses are the
characters you choose:

m T (translate code) can be followed by 0 (no translation), 1
(translate CR/LF to LF and vice versa), 2 (translate CR/LFs and
character numbers 128 through 159), or 3 (translate CR/LFs and
character numbers 128 through 255).

® A (angle mode) can be followed by D (degrees), R (radians), or
G (grads). If the data contains an angle in degrees, radians, or
grads, you should include A(D), A(R), or A(G), respectively.

m F (fraction mark) can be followed by . (period) or , (comma). If
it differs from your calculator’s setting, the fraction mark used in
the data being sent should be included by F(.) or F(,).

For example, at the beginning of the data the sequence **HF:A{D)
will cause the angle mode to be set to degrees during the transfer;
%%HP: TC2)ACGIF{, > will cause the translate code to be set to 2,

the angle mode to be set to grads, and the fraction mark to be set to
comma.

A translate code of T(1) is the normal requirement (and also the
system default). You should use T(2) or T(3) only when characters in
their respective ranges are being translated according to the table on
page 618. You should use T(0) only for string objects, or objects
containing string objects, where the string contains binary data.

630 33: Transferring Data to and from the HP 48

Binary Mode. In Binary mode, no character conversions are performed.
Therefore, the files received from the HP 48 cannot be displayed by the
computer. However,if data is being transferred for backup purposes
only, Binary mode may be preferable becauseit is faster, since the data
does not require as much processing.

The HP 48 automatically uses Binary mode when transferring libraries,
transferring backup objects, or archiving all of user memory.

Sending Commands to a Server (PKT)

The PKT command ([€](I/0] “PET) provides theability to send
and receive data other than HP 48 objects to a remote server. It is
particularly useful for sending Kermit commands—for example,
Directory (D) or Erase (E).

The PKT command takes two string arguments from the stack—the data
field of the packet in level 2, and the packet type in level 1. For example,
executing the sequence "D" "G" FKT sends a requestfor a directory
listing.

A serverissues one of the following responses to the PKT command:

m An acknowledging message, which is returned to stack level 1.

m An error packet. The HP 48 briefly displays the contents of the error
packet. It can beretrieved by executing KERRM ([¥](1/0]

33: Transferring Data to and from the HP 48 631

Serial Commands

Caution

When using the commands described below to transfer
data to or from an HP 48 at 9600 baud, make sure the
ticking clock is not in the display. If the clock is in the
display, it may interrupt a transfer or corrupt the data

being transferred. The clock display is described on page 439 in
chapter 24, “Time, Alarms, and Date Arithmetic.”

Serial 1/0 Commands

Keys Programmable Description
Command

(«2)(I/9] (page 3):

HMIT XMIT Sends a string in level 1 without Kermit

protocol. Once the entire string is
sent, a 1 is returned to level 1; if the
entire string failed to transmit, a @ is
returned to level 1 and the unsent part
of the input string is returned to level
2. Execute ERRM to see the error

message.

632 33: Transferring Data to and from the HP 48

Serial /0 Commands (continued)

Keys Programmable Description
Command

SRECV Receives x characters (argument x is
taken from level 1). The characters
are returned as a string to level 2,

along with a 1 (successful receive) or
@ (unsuccessful receive) to level 1. If
the input buffer contains fewer than x
characters, the HP 48 will wait the
number of seconds specified by the
STIME command (the default is 10
seconds). (If the level 2 number
returned by the BUFLEN command
(see BUFLE below) is used as the
argument for SRECV, no waiting will
occur because x will exactly match the
number of characters in the input
buffer.) Inthe event of an
unsuccessful receive, executing
ERRM returns the error message

associated with the failure.

STIME Sets the serial transmit/receive
timeout to x seconds (argument x is
taken from level 1). The value for x
can range from 0 to 25.4 seconds. If0
is used, no timeout will occur (which
could result in excessive battery
drain).

SBRK Sends a serial BREAK.

33: Transferring Data to and from the HP 48 633

Serial /0 Commands (continued)

Keys Programmable Description
Command

EUFLE BUFLEN Returns the number of characters in
the HP 48 input buffer to level 2, along
witha 1 (no framing error or UART
overrun) ora 8 (framing error or
UART overrun) tolevel 1. Ifa ais
returned, the number of characters
returned to level 2 represents the part

of the data received before the error.
Therefore, that number can be used to
determine where the error occurred.

i)
Note

Even though XMIT, SRECV, and BUFLENcheck the send
and receive mechanisms, the integrity of the data is not
checked. One method to insure that the data sentis the
same as the data received involves appending a checksum

to the end ofthe data being sent, and then verifying that checksum at the
receiving end.

XMIT, SRECYV, and SBRK automatically open the IR/serial port using
the current values of the first four JOPAR parameters (baud, parity,
receive pacing, and transmit pacing) and the current IR/wire setting (set

 using |

in the I/O SETUP menu).

634 33: Transferring Data to and from the HP 48

34

Using Plug-in Cards and Libraries

This chapter covers:

m The types of memory and plug-in cards.

m Installing and removing plug-in cards.

m Using RAM cards to expand user memory or to back up data.

m Using application cards and libraries.

Types of Memory

Plug-in cards increase the amount of HP 48 memory. The HP 48 has two
types of memory:

® Read-only memory, or ROM, is memory that cannot be altered. The
HP 48 has 256K bytes of built-in ROM that contains its command set.
You can expand the amount of ROM byinstalling plug-in application
cards.

® Random-access memory, or RAM, is memory you can change. You
can store data into RAM, modify its contents, and purge data. The
HP 48 contains 32K bytes of built-in RAM. You can increase the
amount of RAM by adding plug-in RAM cards.

34: Using Plug-in Cards and Libraries 635

Installing and Removing Plug-In Cards

The HP 48 has twoports for installing plug-in cards, designated port 1 and
port 2. Port 11is closest to the front of the calculator; port 2 is closest to
the back. Cards can be installed in either port.

fl The calculator must be turned off while you are installing
: or removing plug-in cards. Otherwise, all of user

Caution memory could be erased.

Also, whenever a card is installed or removed, the HP 48 executes a

system halt, causing the contents of the stack to be lost.

To install a plug-in card:

1. If you are installing a new RAM card,first install its battery (see
“Installing the Battery in a New RAM Card,” page 639) and set the
write-protect switch to the desired position (see “Setting the Write-
Protect Switch” on page 641).

2. Turn off the calculator. Do notpress untilyou’ve completed the
installation procedures.

636 34: Using Plug-in Cards and Libraries

3. Remove the port cover at the top of the calculator by pressing down
against the grip area and then pushing in the direction shown.
Removing the cover exposes the two plug-in ports.

4. Select an empty port for the card— either port may be used.

5. Position the plug-in card as shown. The triangular arrow on the
card must point down, toward the calculator. Make sure the card is
lined up properly with a port opening and not positioned half in one
port and half in the other.

6. Slide the card firmly into the port until it stops. When you first feel
resistance, the card has about !/,to go to be fully seated.

7. If desired, repeat steps 4 through 6 for another card.

8. Replace the port cover by sliding it on until the latch engages.

34: Using Plug-in Cards and Libraries 637

9. If the card is a RAM card, you must decide how you want to use it
(see page 642):

m If you want to use the RAM card to increase user memory,
execute the MERGE command as described on page 643.

m If you want to use the RAM card as independent memory,
execute the MERGE command as described on page 643 and
then the FREE command as described on page 649.

To remove a plug-in card:

w If the plug-in card you want to remove is a RAM card that
contains merged memory, you must free the merged

Caution memory before removal. Failure to do so would
probably result in loss of data stored in user memory.

See “Freeing Merged Memory” on page 649 forinstructions.

1. Turn off the calculator. Do notpress untilyou’ve completed the
removalprocess.

2. Remove the port cover.

3. To remove a card, press against the grip as shown and slide the card
out of the port.

4. Replace the port cover.

638 34: Using Plug-in Cards and Libraries

RAM Cards

RAM cards let you increase the amount of RAM in your HP 48. Each
card contains a battery that preserves its contents when the calculator is
off or when the card has been properly removed from the calculator.

RAM cards are good tools for:

m Expanding user memory.

m Backing up or hiding important data.

= Exchanging data between two HP 48 calculators.

m Storing prototype application programs that will eventually be made

into ROMs.

“Uses for RAM Cards” on page 642 covers these tasks.

Preparing the Card for Installation

Installing the Battery in a New RAM Card. Before a new RAM
card is installed, the battery that came with it must be installed in the
card.

w Do not use this procedure for replacing a battery in a
RAM card — it could cause loss of memory in the RAM

Caution card. Appendix A contains instructions for replacing
RAM card batteries on page 663.

34: Using Plug-in Cards and Libraries 639

To install the battery in a new RAM card:

1. Remove the battery holder from the card by inserting a thumbnail
or small screwdriver into the groove and pulling in the direction
shown.

2. The grooved side of the battery holder is marked with the + symbol

and the word UP. Insert the battery into the holder with its + side
up, and then slide the holderintothe card.

640 34: Using Plug-in Cards and Libraries

3. Write the date ofinstallation on the card using a fine-point,
permanent marker. The date is important for determining when to
replace the battery.

Battery orientation
symbol

A . . .

4_:.> ._@ Wirite installation
—date here

Write contents

—— here

 -~

4. Set an alarm in the calculator for 1 year from the date ofinstallation
to remind you to replace the battery. (Depending on the use, the
battery shouldlast between 1 and 3 years. When the battery needs
replacing, a display message will appear if the card is in the
calculator. You are setting this alarm in case the card is not in the
calculator when the battery gets low.) Setting alarms is covered in
chapter 24, and replacing RAM-card batteries is covered in
appendix A.

Setting the Write-Protect Switch. The write-protect switch lets you
protect the contents of the RAM card from being accidentally overwritten
or erased. The switch has two positions:

® Read-only. The contents of the RAM card can be read, but cannot
be changed or erased.

® Read/write. You can write information to the RAM card and erase
its contents.

34: Using Plug-in Cards and Libraries 641

w To avoid loss of user memory:

m Always turn off the calculator before changing the
Caution write-protect switch on an installed card.

m Do not write protect a RAM card containing merged
memory; the memory should be freed first (see page 649).

You can operate the write-protect switch while the card is installed;
however, the switch labels are not visible.

Read only setting

}Read [/ Write setting

S
£
/

Back side of card

Uses for RAM Cards

A RAM card can be used in one of two ways:

m It can be merged with built-in memory. This enables you to expand
the amount of user memory available (up to 288K bytes) for creating
variables and directories, putting objects on the stack,etc.

® It can provide a place independent of user memory in which to back
up important data. You can copy individual objects or entire
directories to a RAM card in much the same way as you would back
up computerfiles to a disk. After you’ve copied the data, you can
remove the card and store it in a safe place, or, as a way of
transferring data, install the card in another HP 48.

642 34: Using Plug-in Cards and Libraries

You can install one or two RAM cards, and you can use either or both of
them for either purpose. However, you cannot use a single card for both
merged and independent memory at the same time.

The following diagram illustrates a system containing two RAM cards—
one containing merged memory and the other containing independent
memory.

Built-in

memory

User

memory

Plug-in Merged
RAM card memory

P";Q'i“ Independent
RAM card memory

Using RAM Cards to Expand User Memory
(Merged Memory)

Before you can use an installed RAM card to expand user memory, you
must execute the MERGE command to merge its memory with built-in
memory.

Before you execute the MERGE command, the write-protect switch on
the RAM card must be in the read/write position. (See page 641 for how
to set the write-protect switch.)

MERGEtakes a port numberasits ar;

keystrokes 1 ()MEMORY)
memory installed in port 1 with built-in memory.

For example, the
merge the plug-in

34: Using Plug-in Cards and Libraries 643

Total Built-in Built-in
user user user

memory memory MERGE memory

_ Total
e |7] user
nde- memo

pendent v
memory Merged

of memory
new
card

When you merge a RAM card that contains backup objects, those objects
are moved to a special port, called port 0. (See page 647 for a description
of port 0.)

a You should never remove a RAM card that contains
merged memory. Doing so will cause loss of data stored

Caution i user memory. Before you can remove the RAM card,
you mustfree the merged memory. (See “Freeing

Merged Memory” on page 649 for instructions.) If you accidentally
remove a card with merged memory and see the message
Replace RAM,; Press OH, you can minimize memory loss by
leaving the calculator on, reinserting the card in the same port, and
then pressing [ON].

Using RAM Cards for Backup (Independent
Memory)

The HP 48 uses a special object type, the backup object, to store backed-
up data. A backup object contains another object, its name, and its
checksum. Simply put, a backup object contains a variable or directory
and its checksum.

644 34: Using Plug-in Cards and Libraries

An independent-memory RAM card that contains the backup objects can
be removed from the HP 48 and either stored for later use or transferred

to another HP 48.

Backing Up Objects into Independent Memory

Backup objects can exist:

® In independent memory (port 1 and/or port 2).

m In a portion of user memory called port 0 (see page 647).

To create a backup object, execute the STO command with two
arguments— the object to be backed up in level 2, and a backup identifier
in level 1. A backup identifier has this form:

i port#:name

where port# is the port number (0, 1, or 2) and name is the name under
which the backup copy will be stored.

Example: Backing Up a Program. To back up a program named
PG]1into independent memory in port 1, recall the program to the stack
by evaluating the sequence 'FG1' RCL, and then store the object as a
backup object in port 1 by evaluating = 1:FG1 STO.

User PG1 '"FG1' RCL PG1 "PGLY

memory 1:FG1 STO PURGE

> > |+
Independent 1: PG1 1: PO
memory

(port 1)

The backup object in the previous example happens to have the same
name as the original object, but the two names could be different.

Note that a directory and its subdirectories can be backed up in a single
backup object.

34: Using Plug-in Cards and Libraries 645

Example: Backing Up a Directory and Its Subdirectories.
Suppose your HOME directory contains a subdirectory named CHEM,
which in turn contains several subdirectories. To back up the entire
directory structure of CHEM in a backup object named BCHEM,recall
the directory to the stack by evaluating the sequence 'CHEM' RCL, and
then store it in the backup object by evaluating = 1:ECHEM STO.

Accessing Backup Objects

You can recall, evaluate, and purge the contents of backup objects. You
can also obtain a listing of all the backup objects in a given port.

Recalling Backup Objects. The LIBRARY menu can be used to
recall thecontents of backup objects. Pressing («1][LIBRARY] followed by

- or F > displays a menu of backup objects and
libraries in that port. To recall the contents of a backup object to the
stack, simply press (] and then the menu key for the desired backup
object.

The RCL command can also be used to recall the contents of a backup
object to the stack. For example, evaluating the sequence
t1:BPG1 RCL recalls the object stored in 1:BPG1.

Evaluating Backup Objects. To use the LIBRARY menu to
evaluate the contents ofa backup object, press [\q] [LIBRARY] followed by

OETZ. Then, simply press the menu key for the

desired backup object

Also, when the argument of EVAL is a backup name, the contents of the
backup objectis evaluated. For example, executing the sequence
:1:BPG1 EVYAL evaluates the program stored in backup object 1:BPG1.
(EVAL alsotakes a list of backup objectsasits argument to evaluate
more than one at a time.)

Purging Backup Objects. To purge a backup object, use the backup
name as the argument of PURGE. For example, executing the sequence
:1:BPG1 PURGE purges the backup object. (PURGE can take a list of
backup objects as its argument to purge more than one at a time.)

646 34: Using Plug-in Cards and Libraries

Using Wildcards to RCL, EVAL, and PURGE. The character

can be used as a wildcard to replace the port number in the arguments
used by RCL, EVAL, and PURGE. (% is the left-shifted alpha key above
[ENTER].) When the HP 48 encounters the wildcard with these
commands,it searches port 2, 1, 0, and then main memory for the

accompanying backup object (the first occurrence of the name is used).
For example, evaluating the sequence :%:BPG1 PURGE causes the HP
48 to search port 2, 1, 0, and then main memory for the first occurrence of

BPG]1and then delete it.

Listing Backup Objects. The PVARS command ((«a)(MEMORY]
NXT) can be used to display a list of objects in the specified
port. It takes as its argument a port number 0, 1, or 2. It returnsto level
1 the type of memory contained in the port ("ROM", "SYSRAM", or a
number representing the amount offree independent RAM); and to level
2 it returnsa list of backup objects and library identification numbers
(both tagged with the port number).

Also, you can use the LIBRARY menu to display a menu of backup
objects and hbranesina glven port. Simply press (\][LIBRARY] followed
by FU o see the desired menu.

Backing Up Objects into User Memory (Port 0)

The HP 48 lets you create backup objects in user memory. The portion of
user memory used for backup objects and librariesis called “port 0.”
There are several reasons you might want to back up data into user
memory:

® You want to “hide” data; that is, you want certain data to be in user

memory, but you don’t wantthe variable(s) to appear in any
directory.

® You want to “free” a RAM card being used for merged memory, and
instead use it for independent memory. (See “Freeing Merged
Memory” on page 649).

You create a backup object in user memory the same way you create
other backup objects, except you specify port 0 as the port number.

34: Using Plug-in Cards and Libraries 647

NOM1 'numi ' roL [_NUMT
User B:HUML STO 'MUM1 ' PURGE

memory 3 3

Port 0 0:NUM1 0:NUM1

Thesize of port 0 is dynamic—it grows and shrinks to accommodate its
contents.

Backing Up All of Memory

The ARCHIVE command([$9)[MEMORY] ARCHI) creates a
backup object named :port#: name in independent memory containing
a copy of:

® The entire HOME directory.

m User key assignments.

® The alarm catalog.

It takes a name tagged by a port number (0, 1, or 2) asits argument. For
example, executing the sequence :2:.JUN1Z ARCHIYE creates backup
object :Z:JUH1Z.

The RESTORE command ([«q][MEMORY] [NXT] [NXT]
the data backed up by the ARCHIVE command. It, too, takesaname
(where the corresponding objectis a directory) tagged by a port number
as its argument. For example, executing the sequence
12:JUH1Z2 RESTORE retrieves the HOME directory backed up above.

y Executing RESTORE overwrites the entire contents of
user memory with the contents of the backup object.

Caution

648 34: Using Plug-in Cards and Libraries

If you want your flag settings to be saved when you back up all of memory,
recall them to the stack (using RCLF) and store them in a variable before
executing ARCHIVE. After you RESTORE memory, you can reactivate
the flag settings by recalling the contents ofthat variable to the stack and
executing STOF (store flags).

Freeing Merged Memory

Freeing merged memory convertsit to independent memory. Merged
memory must be freed if:

® You want to remove the RAM card from its port.

® You want to use the RAM card as independent memory, rather than

user memory.

The FREE command ([+q](MEMORY] frees the
merged memory in a specified port. It takes two arguments— a list in
level 2, and the port number in level 1.

Thelist can be empty, in which case the merged memory is simply freed,
or it can contain one or more names or library identifiers. If the list is not
empty, FREE moves the named backup objects andlibraries from port 0
into the newly-freed card. For example, executing the sequence
£ HUM1 ADD3 » 1 FREE frees the merged memory in port 1 and
makesit independent memory. At the same time, the backup objects
NUM1 andADD3 in port 0 are moved to port 1.

{HUM1 ADD2X 1 FREE

________|t:NUmi
1:ADD3

0:NUM1
0:ADD3

34: Using Plug-in Cards and Libraries 649

To free merged memory,first execute MEMto determine the amount of
available memory (prcss («+7)(MEMORY] EM). If the amount of
available memory is greater than or equal to the amount of memory on
the card you are going to free, you are ready to execute the FREE
command.

If MEM returns a value less than the amount of memory on the card,
executing FREE without any preparation would return an error, since
your stored data would notfit into the amount of user memory remaining
after the merged memory was freed. To avoid an error, you can do any of
the following:

m Purge unneeded variables from user memory.

m Back up data into another RAM card installed in the other port and
then purge the original variables.

® Back up data into port 0 (built-in memory) and then use the level-2
argument of the FREE command to move that datainto the freed
memory. Here’s a step-wise procedure for doing this:

1. Determine the amount of data that must be moved into the
memory that you'll be freeing. For example,if you’ll be
removing a 128K RAM card, and the amount of user memory
available is 126K, you must move at least 2K of variables.

2. Back up the variable in port 0. For example, to back up CALCI
into port 0, recall its contents to the stack and execute
tE:CALCY STO.

3. Purge the variable from user memory (for example,
'CALC' PURGE).

4. If necessary, back up and purge additional variables and
directories.

5. When you’ve backed up enough data, you are ready to execute
the FREE command. The level-2 argument must be a list
containing the names of the variables and directories you’ve
backed up into port 0.

850 34: Using Plug-in Cards and Libraries

Using Application Cards and Libraries

A library is an object that contains named objects that can act as an
extension to the built-in command set. You cannot view or change the
contents of a library. Libraries can exist in application cards, or they may
be copied into RAM. However, libraries cannot be created by the HP 48.

Librariesare identified by:

® A library identifier, which has the form :port#:library#. The
library# (library number) is a unique number associated with the
library. The library identifier is used as the argument of commands
that work with library objects.

® The library name, which is a sequence of characters. The library
name appears in the LIBRARY menu when the library is attached to
a directory on the current path.

Attaching a Library to a Directory

To use a library,it must be attached to a directory in user memory. The
attachment may happen automatically when you install an application
card, or you may have to do it yourself. Consult the owner’s
documentation accompanying your application card (or RAM-based
library) for information about attaching the library.

If the library is not attached automatxcally, you mustuse the ATTACH

command ([$](MEMORY] [NXT] ATTHC
a library numberas its argument.

This is no limit on the numberof libraries that can be attached to the
HOME directory. Only one library at a time can be attached to a
particular subdirectory.

34: Using Plug-in Cards and Libraries 651

Accessing Library Operations (The LIBRARY Menu)

The LIBRARY Menu. Pressing (9] [LIBRARY] displays the LIBRARY
menu, which contains the names of the libraries on the current directory
path. To display a menu of the operations in a library, press the
appropriate key. For example,if you have the HP Solve Equation Library
installed in your calculator, pressing [€9][CIBRARY] Ef displays a
menu of all the operationsin that library.

Accessing Libraries Attached to Subdirectories. The rules for
accessing libraries attached to various subdirectories are the same as the
rules for accessing variablesin those directories. For example, suppose
your HP 48 has the following directory structure and attached libraries:

 | | | I*
HOME PROG M EQUN G Library A Library B

PROG FNCT MATH STAK Library C

MATH ARAY TRG A Library D

When HOME isthe current directory, pressing [€q] [LIBRARY] displays the
menu ofits attached libraries . When PROG is the
current directory, pressing [¢q][CIBRARY] displays a menu ofits attached
library, as well as the other libraries on the current path,

Like variables, library operations can be accessed if the library is attached
to the current directory or to a directory in the current path. For
example,since libraries A and B are attached to HOME,their operations
can be accessed from any directory. You can access the operations in
library C when PROG or MATH are the current directory. However, you
cannot access the operationsin library D when PROG is the current
directory.

652 34: Using Plug-in Cards and Libraries

Additional Commands That Access Libraries

Library Commands

Keys Programmable Description
Command

STO Stores a library object from level 2 into
independent memory in the port
specified in level 1.

[][RCL RCL Takes a library identifier
(: port#: library#) as its argument and
recalls the specified library to the stack.

[«a)(PURGE PURGE Takes a library identifier
(: port#:library#) as its argument and
purges the specified RAM-based
library.

(«2]([MEMORY] (page2):

EVHES PVARS Takes a port number as its argument
and displays a list of the backup
identifiers and library identifiers in the
specified port.

LIBS Displays a list containing the names,

library number, and port number of all
the libraries attached to the current
directory.

ATTIHC ATTACH Takes a library numberas its argument
and attaches the specified library to the
current directory.

DETHD DETACH Takes a library number as its argument

and detaches the specified library from
the current directory.

34: Using Plug-in Cards and Libraries 653

Appendixes and Indexes

A

Support, Batteries, and Service

Calculator Support

You can obtain answers to questions about using your calculator from our
Calculator Support department. Our experience has shown that many
customers have similar questions about our products, so we have provided
the following section, “Answers to Common Questions.” If you don’t find
the answer to your question there, contact us at the address or phone
number on the inside back cover.

Answers to Common Questions

Q: The calculator doesn’t turn on when Ipress [ON). What’s wrong?

A: There may be a simple problem that you can solve immediately, or the
calculator may require service. See “Testing Calculator Operation” on
page 665.

Q: I’'m not sure whether the calculator is malfunctioning or if'm doing

something incorrectly. How can I verify that the calculator is operating

properly?

A: Refer to “Testing Calculator Operation” on page 665 in this appendix.

Q: The () annunciatorstays on even when the calculator is turned off. Is

anything wrong?

A: This indicates a low-battery condition in the calculator or a RAM card,
or an alarm that is past due. To determine whatis causing the ()
annunciator to stay on, turn the calculator off and then on. A message in
the display will identify the problem. Refer to “Changing Batteries” in
this appendix (page 661) or to “Setting Alarms” in chapter 24 (page 443).

656 A: Support, Batteries, and Service

Q: How can I determine how much memory is left in the calculator?

A: Press [&q)(MEMORY] | The numberof bytes of available
memory will appear at the lower right corner of the display. An empty
memory should show approximately 26888 (bytes of internal RAM).

Q: How do I clear everythingfrom the calculator’s memory?

A: Perform the following steps:

1. Press and hold [ON].

2. Simultaneously press and release both ofthe outer keys in the top
row (the menu keys with A and F next to them).

3. Release [ON].

The calculator will beep and the Tru To Recower Memorg? prompt
will be displayed. Press to clear user memory; the Memory
Clear message will appear in the display.

d This procedure will not clear the contents of a plug-in
RAM card unless that RAM is merged with the calculator’s

Note main memory.

Q: How do I change the number ofdecimalplaces the HP 48 displays?

A: Perform the following steps:

1. Go to page 1 of the MODES menu: press [¢3][MODES].

2. Press the number of decimal places you want (0 — 11).

3. Press the menu key for the display format you desire (
,or).

Refer to “Display Modes”in chapter 2 (page 57).

A: Support, Batteries, and Service 657

Q: My numbers contain commas as decimalpoints. How do I restore
periods?

A: Perform the following steps:

1. Goto page 4 of the MODES menu (press

(2](MODES] (NXT)).
2. Press the | adix toggle menu key. (The = should disappear

from the m 'l'('eif.)

Q: What does an “E”in a number (for example, 2.51E - 13) mean?

A: Exponentof 10 (for example, 2.51 x 10713). Refer to “Display Modes”
(page 57) in chapter 2.

Q: When I take the sine ofm in Degrees mode, why do Iget 'SIH{w» '
instead of a number?

A: The calculatoris in Symbolic Result mode; 'SIHcw> ' is the
symbolic answer. Press [*][+NUM] to convert 'SIH{mw» ' toits
numerical equivalent of .0548... up to 11 decimal places. You can also
press on page 1 of the MODES menu to change to Numerical
Results mode and prevent symbolic evaluation.

Q: What does “object” mean?

A: “Object” is the general term for all elements of data the HP 48 works
with. Numbers, expressions, arrays, programs, and so on, are all types of
objects. Refer to chapter 4, “Objects,” for a description of the object
types accepted by the calculator.

Q: Whatdo three dots (...) mean ateither end of a display line?

A: The three dots (called an ellipsis) indicate that the displayed objectis
too long to display on one line. To view undisplayed portions of the
object, use the [« or (] cursor keys.

658 A: Support, Batteries, and Service

Q: The calculator beeps and displays Bad Argument Tupe. What's
wrong?

A: The objects on the stack aren’t the correct type for the command you
are attempting. For example, executing % " (in page 2 of the PRG
OBJ menu) with a numberin stack levels 2 causesthis error.

Q: The calculator beeps and displays Too Few Arguments. What's
wrong?

A: There are fewer arguments on the stack than required by the
command you are attempting. For example, executing with only one
argument or number on the stack causes this error.

Q: The calculator beeps and displays a message differentfrom the two listed
above. How do Ifind out what’s wrong?

A: Refer to “Messages” in appendix B.

Q: I can’tfind some variables that I used earlier. Where did they go?

A: You may have been using the variables in a different directory. If you
can’t remember which directory you were using, you’ll need to check all
the directories in your calculator.

Q: Sometimes my HP 48 seemstopausefor afew seconds during a
calculation. Is anything wrong?

A: Nothing is wrong. The calculator does some system cleanup from time
to time to eliminate temporary objects created from normal operation.
This cleanup process frees memory for current operations.

Q: During normal operation, the printerprints several lines quickly, then
slows down. Why?

A: The calculator quickly transmits a certain amount of data to the
printer, then slowsits transmission rate to ensure that the printer can
keep up.

Q: How can I increase the printing speed ofmy HP 82240B Infrared
Thermal Printer?

A: Use an agc adapter with your HP 82240B printer so that the printer
can print faster. Also,set the calculator delay to match the print speed
(see “Setting the Delay” on page 607).

A: Support, Batteries, and Service 659

Environmental Limits

Calculator. To maintain product reliability, avoid getting the calculator
wet and observe the following temperature and humidity limits:

B Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: —20° to 65°C (—4° to 149°F).

® Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

Plug-In Cards. The environmental limits for Hewlett Packard plug-in
cardsare:

® Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: —20° to 60°C (-4° to 140°F).

m Storage temperature for RAM card data retention: 0° to 60°C (32° to
140°F).

s Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

When to Replace Batteries

When a low-battery condition exists, the () annunciator remains on, even

when the calculator is turned off. When the calculatoris turned on during
a low-battery condition, Warning: LowEat() is displayed for
approximately 3 seconds. LowEat (P12 refers to port 1, LowEat (F23
refers to port 2, and LowEat ¢S5 refers to the calculator (system)
batteries.

Replace the RAM card battery or the calculator batteries as soon as
possible after the () low-battery annunciator and warning message
appear. If you continue to use the calculator while the (+) annunciatoris
on, the display will eventually dim and you may lose calculator and RAM
card data.

660 A: Support, Batteries, and Service

Under typical use, a RAM card’s battery should last between 1 and 3
years. Be sure to mark the card with the battery-installation date, and, in
case the RAM card is notin the calculator when the battery needs
replacement, set an alarm for 1 year from that date to remind you to
install a fresh battery. RAM cards do not come with a battery installed.

Changing Batteries

Battery Types

Calculator Batteries. Any brand of size AAA batteries. Be sure that
all three batteries are of the same brand and type.

The use of rechargeable batteries is not recommended because oftheir
lower capacity.

Plug-Iin RAM Card Batteries. 3-Volt 2016 coin cell.

Changing Calculator Batteries

These instructions are for changing calculator batteries. The instructions
for replacing RAM card batteries start on page 663.

fl Whenever you remove batteries from the calculator, be
sure the calculatoris off and do not press the key

Caution yntil the new batteries are installed. If you press
when batteries are not in the calculator, you may lose all

of calculator memory.

1. Turn the calculator off. You may lose memory in the calculator and
plug-in RAM cards if the calculator batteries are removed when the
calculator is on.

A: Support, Batteries, and Service 661

2. Have three,fresh batteries (of the same brand and type) at hand.
Wipe off both ends of each battery with a clean, dry cloth.

3. Remove the calculator battery-compartment door by pressing down
and sliding it off away from the calculator. Be careful not to press
the calculator’s key. Refer to the following illustration:

4. Turn the calculator over and shake the batteries out. Once the

batteries are out, you should replace them with fresh batteries
within 2 minutes to protect against memory loss.

#’fl Do not mutilate, puncture, or dispose of batteries in

fire. The batteries can burst or explode, releasing
Warning hazardous chemicals. Discard used batteries

according to the manufacturer’s instructions.

662 A: Support, Batteries, and Service

5. Avoid touching the battery terminals. Batteries are easier to install if
the negative (plain) ends are inserted first, and if the center battery
is installed last.

Position the batteries according to the outlines in the bottom of the
battery compartment. Refer to the following illustration:

6. Replace the battery-compartment door by sliding the tabs on the
doorinto the slots in the calculator case.

7. Press to turn the calculator on.

Changing a RAM Card Battery

1. Turn the calculator over and remove the plastic cover over the
plug-in card ports (on the display-end ofthe calculator).

A: Support, Batteries, and Service 663

2. With the RAM card in port 1 or 2, turn the calculator on.

w Since RAM cards run off the calculator batteries when
the calculatoris [ON], you should replace a card’s battery

Caution only when the card is in the calculator and the calculator
is turned on. RAM memory may be lost if you remove a

RAM card battery when the calculator is off, or when the card is not
installed in the calculator.

3. Place your index finger in the recess near the exposed end ofthe
RAM card— this prevents removal ofthe card from the calculator
when you remove the card’s battery holder. Now insert the
thumbnail of your free hand into the nail grip in the black plastic at
the left side of the end of the card and pull the battery holder out of
the card. Nail grip

664 A: Support, Batteries, and Service

4. Remove the old battery from the plastic battery holder.

g Do not mutilate, puncture, or dispose of batteries in

fire. The batteries can burst or explode, releasing
Warning hazardous chemicals. Discard used batteries

according to the manufacturer’s instructions.

5. Install a fresh, 3-Volt 2016 coin cell in the plastic battery holder and
reinsert the battery holder (with battery) into the RAM card. Be
sure to install the battery with the side marked “+” toward the front of
the card.

6. Mark the card with the battery-installation date, and, in case the

RAM card is notin the calculator when its battery needs replacing,
set an alarm for 1 year from that date to remind you to changeit.

7. Replace the plug-in port cover.

Testing Calculator Operation

Use the following guidelines to determine whether the calculator is
functioning properly. Test the calculator after every step to see if
operation has been restored. If your calculator requires service, refer to
page 674.

The calculator won’t turn on or doesn’t respond when you
press the keys.

1. Make sure that three fresh batteries are correctly installed in the
calculator.

2. If the displayis blank, press and hold [ONJ; press and release
several times until characters become visible; then release [ON]. If

no characters appear in the display, the calculator requires service.

3. If a halted program won’t respond when you press [ATTN], try
pressing again.

A: Support, Batteries, and Service 665

4. If the keyboard is “locked,” perform a system halt as follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

5. If the display appears garbled, perform a memory reset as follows:

a. Press and hold [ON].

b. Press and hold both of the outer keys in the top row (the
menu keys with A and F next to them).

¢. Release all three keys.

The calculator will beep and display the message Trw To
Recover Memorg? at the top of the display. Press @ ¥EZ to
recover as much memory as possible.

If these stepsfail to restore operation, the calculator requires service.

The calculator responds to keystrokes, but you suspect it’s
malfunctioning.

1. Run the self-test described in the next section. If the calculator fails

the self-test, it requires service.

2. If the calculator passes the self-test, you may have made a mistake
operating the calculator. Reread appropriate portions of the
manual and check “Answers to Common Questions” (page 656).

3. Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

666 A: Support, Batteries, and Service

Self-Test

If the display turns on, but the calculator does not seem to be operating
properly, run the diagnostic self-test :

1. Press and hold [ON].

2. Press and release the second key from the right in the top row (the
menu key with E next to it).

3. Release [ON].

The diagnostic self-test tests the internal ROM and RAM, and
generates various patterns in the display. The test repeats
continuously until it is halted.

4. To halt the self-test, perform a system halt as follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

The diagnostic self-test should be successfully completed before running
any of the tests described in the following sections.

If the self-test indicates an internal ROM or RAM failure (if IROM COF
and IRAM OF are not displayed), the calculator requires service.

Keyboard Test

This test checks all of the calculator’s keys for proper operation.

To run the interactive keyboard test:

1. Press and hold [ON].

2. Press and release the third key from the right in the top row (the
menu key with D next to it).

3. Release [ON].

A: Support, Batteries, and Service 667

4. Press and release the second key from the right in the top row (the
menu key with E next to it). KED1 will appear in the upper left
corner of the display.

5. Starting at the upperleft corner and moving left to right, press each
of the 49 keys on the keyboard. If you press the keys in the proper
order and they are functioning properly, the calculator emits a
high-pitch beep at each press of a key. When the 49th key ()
has been pressed, the displayed message should change to KED'1
oK.

If you press a key out of sequence, a five-digit hexadecimal number
will appear next to KED'1. Reset the keyboard test (do steps 1
through 3 above), and rerun the test.

If a key isn’t functioning properly, the next keystroke displays the
hex location of the expected and the received location. If you
pressed the keys in order and got this message, the calculator
requires service. Be sure to include a copy of the error message
when you ship the calculator for service.

6. To exit the keyboard test, perform a system halt as follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

668 A: Support, Batteries, and Service

Port RAM Test

The port RAM test non-destructively tests the ports and the installed
plug-in RAM cards. (Plug-in RAM-card memory is preserved.)

To run the port RAM test:

1.

2.

Check that a plug-in RAM card is properly installed in port 1
and/or port 2.

Verify that the switch on each cardis set to the “read/write”
position:

Read only setting

Read / Write setting

Back side of card

Turn the calculator on.

. Press and hold [ON].

. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

. Release [ON].

A vertical line will appear at both sides and at the center of the
display.

A: Support, Batteries, and Service 669

7. Press and release [4].

RAM1 and/or RAMZ will appear at the top left corner of the display
and the size of the corresponding plug-in RAM card (32K or
128K) will appear at the top right corner of the display. 0K will
appear to the right of RAM1 and/or RAMZ when the port RAM
test has been successfully completed. A failure message (for
example, RAM1 B808082) will be displayed for each port that does
not contain a plug-in RAM card or if a card’s read/write switch is in
the “write-protect” position. This message should be ignored.

If 0K does not appear for a RAM card set to read/write, the card
should be moved to the other port and the test rerun. IF 0¥ still
doesn’t appear, the RAM card should be replaced with a new one.

To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

IR Loop-Back Test

This test checks the operation of the send and receive infrared sensors
and their associated circuits.

To run the IR Loop-Back test:

1.

2.

3.

670

Press and hold [ON].

Press and release the fourth key from the left in the top row (the
menu key with D next to it).

Release [ON]; a vertical line will appear at both sides, and at the
center of the display.

. Be sure thatthe plastic plug-in card cover is in place and that it
covers the clear lamp bulbsin the top end ofthe calculator.

A: Support, Batteries, and Service

5. Press [EVAL].

IRLE will appear at the top left corner of the display.

0K will appear to the right of IRLE if the calculator passes this test.

If 0K does not appear,the calculator requires service.

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

Serial Loop-Back Test

This test checks the operation of the send and receivecircuits of the serial
interface at the top of the calculator.

To run the Serial Loop-Backtest:

1. Press and hold [ON].

2. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

3. Release [ON]; a vertical line will appear at both sides, and at the
center of the display.

4. Temporarily connect (short) the middle two pins (pins 2 and 3) of
the 4-pin serial connector at the top end of the calculator. Be
careful not to bend or severelyjar the pins.

A: Support, Batteries, and Service 671

5. Press [PRG].

IJ_LE will appear at the top left corner of the display.

0K will appear to the right of U_LE if the calculator passes this test.

If 0K does not appear,the calculator requires service.

.# If you inadvertently short pins 1 and 2 or pins 3 and 4 of the
serial connector, the loop-back test will return

Note U_LE @@8al or U_LE 88882 (test-failed message), but
you will not damage the calculator.

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next toit).

c. Release [ON].

The empty stack display should appear.

672 A: Support, Batteries, and Service

Limited One-Year Warranty

What Is Covered. The calculator (except for the batteries, or damage
caused by the batteries) and calculator accessories are warranted by
Hewlett-Packard against defects in materials and workmanship for one year
from the date of originalpurchase. If you sell your unit or giveit as a gift,
the warranty is automatically transferred to the new owner and remains in
effect for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that proves to
be defective, provided you return the product, shipping prepaid, to a
Hewlett-Packard service center. (Replacement may be made with a
newer model of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state, province to province, or country to
country.

What Is Not Covered. Batteries, and damage caused by the batteries,
are not covered by the Hewlett-Packard warranty. Check with the battery
manufacturer about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by accident
or misuse or as the result of service or modification by other than an
authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement ofa
product is your exclusive remedy. ANY OTHER IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN
WARRANTY. Somestates, provinces, or countries do not allow

limitations on how long an implied warranty lasts, so the above limitation
may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD
COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES.
Some states, provinces, or countries do not allow the exclusion or

limitation of incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time of
manufacture. Hewlett-Packard shall have no obligation to modify or
update products, once sold.

A: Support, Batteries, and Service 673

Consumer Transactions in the United Kingdom. This warranty
shall not apply to consumer transactions and shall not affect the statutory
rights of a consumer. In relation to such transactions, the rights and
obligations of Seller and Buyer shall be determined by statute.

If the Calculator Requires Service

fl If the contentsof your calculator’s memory are important,
you should back up the memory on a plug-in RAM card,

Note another HP 48, or a computer before sending in the
calculator for repair.

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator, or replace it with the same model or one
of equal or better functionality, whetherit is under warranty or not.
There is a service charge for service after the warranty period.
Calculators normally are serviced and reshipped within 5 working days.

= In the United States: Send the calculator to the Corvallis Service

Centerlisted on the inside of the back cover.

= In Europe: Contact your Hewlett-Packard sales office or dealer, or
Hewlett-Packard’s European headquarters (address below) for the
location of the nearest service center. Do not ship the calculatorfor
service withoutfirst contacting a Hewlett-Packard office.

Hewlett-Packard S.A.
150, Route du Nant-d’Avril

P.O. Box CH 1217 Meyrin 2
Geneva, Switzerland

Telephone: 022 780.81.11

= In other countries: Contact your Hewlett-Packard sales office or
dealer or write to the Corvallis Service Center (listed on the inside of
the back cover) for the location of other service centers. If local
service is unavailable, you can ship the calculator to the Corvallis
Service Center for repair.

674 A: Support, Batteries, and Service

All shipping, reimportation arrangements, and customs costs are your
responsibility.

Service Charge. Contact the Corvallis Service Center (inside back
cover) for the standard out-of-warranty repair charges. This charge is
subject to the customer’s local sales or value-added tax wherever
applicable.

Calculator products damaged by accident or misuse are not covered by
the fixed charges. These charges are individually determined based on
time and material.

Shipping Instructions.If your calculator requires service, ship it to
the nearest authorized service center or collection point.

m Include your return address and a description of the problem.

® Include proof of purchase date if the warranty has not expired.

® Include a purchase order, check, or credit card number plus

expiration date (VISA or MasterCard) to cover the standard repair
charge.

® Ship your calculator postageprepaid in adequate protective packaging
to prevent damage. Shipping damage is not covered by the warranty,
so we recommend that you insure the shipment.

Warranty on Service. Service is warranted against defects in materials
and workmanship for 90 days from the date of service.

Service Agreements. In the U.S,, a support agreement is available for
repair and service. For additional information, contact the Corvallis
Service Center (see the inside of the back cover).

A: Support, Batteries, and Service 675

Regulatory Information

U.S.A. The HP 48 generates and uses radio frequency energy and may
interfere with radio and television reception. The calculator complies
with the limits for a Class B computing device as specified in Subpart J of
Part 15 of FCC Rules, which provide reasonable protection against such
interference in a residential installation. In the unlikely event that there is
interference to radio or television reception (which can be determined by
turning the HP 48 off and on or by removing the batteries), try the
following:

m Reorienting the receiving antenna.

m Relocating the calculator with respectto the receiver.

For more information, consult your dealer, an experienced

radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve
Radio-TVInterference Problems. This bookletis available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number

004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. This is to certify that this equipmentis in accordance
with the Radio Interference Requirements of Directive FTZ 1046/84. The
German Bundespost was notified that this equipment was put into
circulation, the right to check the serie for compliance with the
requirements was granted.

676 A: Support, Batteries, and Service

Messages

This appendix lists selected HP 48 messages.

In the following tables, messages are first arranged alphabetically by name
and then numerically by message number.

Messages Listed Alphabetically

Message Meaning # (hex)

Acknowledged Alarm acknowledged. 619

Autoscalinag Calculator is autoscaling x- 610
and/ory- axis.

Awaiting Server Indicates Server mode active. coC
Crd.

Bad Araument Tupe One or more stack arguments 202
were incorrect type for
operation.

Ead Arqument Yalue Argument value out of 203
operation’s range.

Bad Guessies) Guess(es) supplied to HP A01
Solve application or ROOTlie
outside domain of equation.

677

Messages Listed Alphabetically (continued)

(Equation, Statistics, Alarm)

Message Meaning # (hex)

Bad Packet Elock Computed packet checksum Cot
check doesn’t match checksum in

packet.

Can't Edit Hull Attempted to edit a string 102
Char. containing character “0”.

Circular Reference Attempted to store a variable 129
nameinto itself.

Connecting Indicates verifying IR or serial COA
connection.

Constant? HP Solve application or A02
ROOT returned same value at
every sample point of current
equation.

Copied to stack copied selected 623
equation to stack.

Current equation: ldentifies current equation. 608

Deleting Column MatrixWriter application is 504
deleting a column.

Deleting Row MatrixWriter application is 503
deleting a row.

Directory Hot Name of existing directory 12A
Allowed variable used as argument.

Directory Attempted to store a directory 002
Recursion into itself.

Empty catalog No data in current catalog 60D

678 B: Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Enter alarm, Alarm entry prompt. 61A
press SET

Enter egqn, press Store new equation in EQ. 60A
HEW

Enter value (zoom Zoom operations prompt. 622
out if >13, press

EMTER

Extrenun Result returned by HP Solve A06
application or ROOT is an
extremum rather than a root.

HALT Hot Allowed A program containing HALT 126
executed while MatrixWriter
application, DRAW, or HP

Solve application active.

1-0 setup menu Identifies 1/0O setup menu. 61C

Implicit (> off Implicit parentheses off. 207

Implicit <) on Implicit parentheses on. 208

Incomplete (], [¥], or [ENTER] pressed 206
Subexpression before all function arguments

supplied.

Inconsistent Units Attempted unit conversion B02
with incompatible units.

Infinite Result Math exception: Calculation 305
such as 1/0 infinite result.

Insertina Column MatrixWriter application is 504 inserting a column.

B: Messages 679

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Inserting Row MatrixWriter application is 503
inserting a row.

Insufficient Not enough free memory to 001
Memory execute operation.

Insufficient Z A Statistics command was 603
Data executed when LDAT did not

contain enough data points
for calculation.

Interrupted The HP Solve application or AO03
ROOT was interrupted by

(ATTN].

Invalid Arrag returned object of 502
Elemsnt wrong type for current matrix.

Imnvalid Card Data HP 48 does not recognize 008
data on plug-in card.

Imvealid D Date argument notreal Dot

number in correct format, or

was out of range.

i o
+
T

Invalid Definition Incorrect structure of 12C

equation argument for

DEFINE.

Invalid Dimension Array argument had wrong 501
dimensions.

Messages Listed Alphabetically (continued)

(hex)

Invalid E@

Invalid IOFPAR

Invalid Hame

Invalid FPARE

Invalid PRTFAR

Invalid PTYPE

Invalid Eepeat

Invalid Server

Cmd.

Invalid Suntax

Attempted operation from
GRAPHICS FCN menu when
EQ did not contain algebraic,
or, attempted DRAW with
CONIC plot type when EQ did
not contain algebraic.

IOPAR not a list, or one or
more objects in list missing or
invalid.

Received illegal filename, or

server asked to send illegal
filename.

PPAR not a list, or one or
more objects in list missing or
invalid.

PRTPAR not a list, or one or

more objects in list missing or
invalid.

Plot type invalid for current
equation.

Alarm repeat interval out of
range.

Invalid command received

while in Server mode.

HP 48 unable execute
or STR— dueto invalid object
syntax.

607

C12

C17

12E

C13

620

D03

cos

106

681

Messages Listed Alphabetically (continued)

 recovery feature disabled.

Message Meaning # (hex)

Invalid Time Time argument notreal D02
number in correct format, or

out of range.

Invalid Unit Unit operation attempted with BO1
invalid or undefined user unit.

Invalid User Type orstructure of object 103
Function executed as user-defined

function was incorrect.

Invalid Z Data Statistics command executed 601

with invalid object stored in
YDAT.

Invalid E Data Non-linear curvefit attempted 605
LHCHag 2 when ZDAT matrix contained

a negative element.

Invalid Z Data Non-linear curve fit attempted 606
LHCE when ZDAT matrix contained

a 0 element.

Invalid ZFAR YPAR not list, or one or more 604

objectsin list missing or
invalid.

LAST CHD Diszabled LAST CMD] pressed while 125
that recovery feature
disabled.

LAST STACK LAST STACK] pressed while 124
Dizabled that recovery feature

disabled.

LASTARG Disabled LASTARG executed while that 205

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Low Batterwy System batteries too low to C14
safely print or perform /0.

Memory Clear HP 48 memory was cleared. 005

Hame Conflict Execution of | (where) 13C
attempted to assign value to
variable of integration or
summation index.

Hame the eguation, Name equation and store it in 60B
press EHTER EQ.

Hame the =tat Namestatistics data and 621
data, press EHMTER store it in ZDAT.

HMegat ive Underf low Math exception: Calculation 302
returned negative, non-zero
result greater than —MINR.

Ho Current ‘K, DRAW, or RCEQ 104

Equation executed with nonexistent
EQ.

Mo current Plot and HP Solve application 609
equation status message.

Ho Room in Port Insufficient free memory in 0oB
specified RAM port.

Ho Room to Save Not enough free memory to 101
Stack

save copy of the stack. LAST
STACK is automatically
disabled.

B: Messages 683

Messages Listed Alphabetically (continued)

 extremum, or intersection was

notvisible in current display.

Message Meaning # (hex)

Ho Room to Show Stack objects displayed by 131
St ack type only due to low memory

condition.

Mo stat data to No data stored in LDAT. 60F

Flot

Hon-Empty Attempted to purge non- 12B
Directory empty directory.

Hon-Real Result Execution of HP Solve 12F
application, ROOT, DRAW, or
[returned result other than
real number or unit.

Homexistent Alarm Alarm list did not contain D04
alarm specified by alarm
command.

Honexistent ZDAT Statistics command executed 602
when IDAT did not exist.

Object Discarded Sender sent an EOF (2) COF
packet with a “D”in the data
field.

Object In Use Attempted PURGE or STO 009
into a backup object when its
stored object wasin use.

Object Mot in Fort Attempted to access a 00C
nonexistent backup object or
library.

(OFF SCREEMX Function value,root, 61F

684 B: Messages

Messages Listed Alphabetically (continued)

Message # (hex)

Out of Memory

Ouvertlow

Facket #

Farity Error

Fort Closed

Fort Hot Auvailable

Fositive Under{low

NFPower Lost

One or more objects must be
purged to continue calculator
operation.

Math exception: Calculation
returned result greater in
absolute value than MAXR.

Indicates packet number
during send or receive.

Received bytes’ parity bit
doesn’t match current parity
setting.

Possible 1/R or serial
hardware failure. Run self-test.

Used a port command on an
empty port, or one containing
ROM instead of RAM.

Attempted to execute a server
command thatitself uses the

1/0 port.

Math exception: Calculation
returned positive, non-zero
result less than MINR.

Calculator turned on following
a power loss. Memory may
have been corrupted.

135

303

C10

Co5

Co9

00A

301

006
685

Messages Listed Alphabetically (continued)

Message # (hex)

Processing Command

Frotocol Error

Eeceive Buffer

Ouerrun

FEeceive Error

Eeceiving

Eetru #

Select a model

Select plot tupe

Select repeat

interuval

Indicates processing of host
command packet.

Received a packet whose
length was shorter than a null
packet.

Maximum packet length
parameter from other
machine is illegal.

Kermit: More than 255 bytes
of retries sent before HP 48
received another packet.

SRECV: Incoming data
overflowed the buffer.

UART overrun or framing
error.

Identifies object name while
receiving.

Indicates number ofretries
while retrying packet
exchange.

Select statistics curve fitting
model.

Select plot type.

Select alarm repeatinterval.

Ci1

Cco7

Co4

Cco3

COE

614

60C

61B

686 B: Messages

Messages Listed Alphabetically (continued)

(hex)

Timeout

Too Few Argument=s

Transfer Failed

Unable to Isolate

Undefined Local

Hame

Identifies object name while
sending.

HP Solve application or
ROOT unableto find point at
which current equation
evaluates to zero, but did find
two neighboring points at
which equation changed sign.

Printing to serial port:
Received XOFF and timed out
waiting for XON.

Kermit: Timed out waiting for

packetto arrive.

Command required more
arguments than were

available on stack.

10 successive attempts to
receive a good packet were
unsuccessful.

ISOLfailed because specified
name absent or contained in
argument of function with no
inverse.

Executed or recalled local

name for which

corresponding local variable
did not exist.

coD

A05

Co2

201

Co6

130

003

B: Messages 687

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Undefined Hame Executed or recalled global 204
name for which
corresponding variable does
not exist.

Undefined Result Calculation such as 0/0 304
generated mathematically
undefined result.

Undefined HLIE Executed an XLIB name when 004
Hare specified library absent.

Wrong Argument User-defined function 128
Count evaluated with an incorrect

number of parenthetical
arguments.

and y-axis zoom. ldentifies zoom option. 627

¥ axis zoom. Identifies zoom option. 625

% axis zoom Identifies zoom option. 624
WoRHUTO

4 axis zoonm. Identifies zoom option. 626

ZERO Result returned by the HP A04
Solve application or ROOT is
a root (a point at which
current equation evaluates to
zero).

" Identifies no execution action 61E

when EXECSpressed.
688 B: Messages

Messages Listed Numerically

(hex) Message

General Messages

001 Insufficient Memory

002 Directory Recursion

003 Undefined Local Hame

004 Undefined ®LIB Hame

005 Memory Clear

006 Fower Lost

008 Invalid Card Data

009 Object In use

00A Fort Hot available

00B Ho Room in Port

00C Object Hot in Port

101 Ho Room to Save Stack

102 Can't Edit HNull Char.

103 Invalid User Function

104 Mo Current Equation

106 Invalid Suntax

124 LAST STACK Dizabled

125 LAST CHMD Disabled

126 HALT Hot Allowed

128 Mromna Argument Count

129 Circular Reference

12A Directory Hot Allowed

12B Mon-Emptu Directory

12C Invalid Definition

12E Invwalid FPAR

12F Hon-Real Result

689

Messages Listed Numerically (continued)

(hex) Message

General Messages (continued)

130 Unable to Isolate

131 Mo Room to Show Stack

Out-of-Memory Prompts

135 Out of Memory

13C Mame Conflict

Stack Errors

201 Too Few Arguments

202 EBad Araument Tupe

203 Bad Argument VYalue

204 Undefined Hame

205 LASTARG Disabled

EquationWriter Application Messages

206 Incomplete Subexpression

207 Implicit <) off

208 Implicit <2 on

Floating-Point Errors

301 Positive Underflow

302 Hegative Underflow

303 Ouert low

304 Undefined Result

305 Infinite Result

Array Messages

501 Invalid Dimension

502 Invalid Arrau Element

503 Deleting Row

504 Deleting Column

505 Inserting Row

Messages Listed Numerically (continued)

(hex) Message

Array Messages (continued)

506 lInserting Column

Statistics Messages

601 Invalid E Data

602 Monexistent ZDAT

603 Insufficient Z Data

604 Invalid ZPAR

605 Invalid £ Data LH{Hea’

606 Invalid Z Data LHcE>

Plot, 1/0, Time and HP Solve Application Messages

607 Invalid E&

608 Current eguation:

609 Ho current equation.

60A Enter eqn, press HEW

60B Hame the equation, press EMWTER

60C Select plot tupe

60D Empty catalog

60F Ho Statistics data to plot

610 Autoscaling

614 Select a model

619 Acknowledaed

61A Enter alarm, press SET

61B Select repeat interwval

61C I1-0 setup menu

61D Flot tupe:

61E e

61F (OFF SCREEM

620 Invealid PTYFE

621 Hame the stat data, press EMTER
B: Messages 691

Messages Listed Numerically (continued)

(hex) Message

Application Messages (continued)

622 Enter value {(zoom out if >1), press

EHTER

623 Copied to stack

624 % axis zoom wsAUTO.

625 X axis zoom.

626 g axis zoon.

627 ¥ and y-axis zoom.

A01 Bad Gueszsies)

A02 Constant?

A03 Interrupted

A04 Zero

A0S Sign Reversal

A06 Extremnun

Unit Management

BO1 Invalid Unit

B02 Inconsistent Units

692 B: Messages

Messages Listed Numerically (continued)

(hex) Message

1/0 and Printing

Co1 Bad Packet EBlock check

co2 Timeout

Co3 Receive Error

Co4 Receive Buffer Ouverrun

Co5 Parity Error

Co6 Transfer Failed

co7 Protocol Error

Ccos Invalid Server Cwmd

C09 Fort Closed

COA Connecting

coB Fetru #

coC Awaiting Server Cmd.

coD Sending

COE Receiving

COF Object Discarded

C10 Packet #

C11 Proceszzing Command

C12 Invalid IOFAR

C13 Invwalid FPRETFAE

Ci14 I1-0: Batt Too Low

Ci15 Empty Stack

C17 Invalid Hame

Time Messages
 Dot Inwalid Date

D02 Invalid Time

D03 Invalid Repeat

D04 Honexistent Alarm

B: Messages 693

C

HP 48 Character Codes

Most of the characters in the HP 48 character set can be directly typed
into the display from the Alpha keyboard. For example, to display #,
type [a] [\1)(a). (The Alpha keyboard is presented in chapter 2.) Any
character in the set can be displayed by typing its corresponding character
code and then executing the CHR command. The syntax is char# CHE.
Certain charactersin the set are not on the Alpha keyboard. To display
one of these characters, you must type its character code and execute
CHR.

The character tables on the following pages show the HP 48 characters
and their corresponding character codes. (This set, except for character
numbers 128 through 159,is based on the ISO 8859 Latin 1 characterset.)

If you find that a character you frequently use is not
available on the primary or alpha keyboards (see chapter 2

Note for all the available characters), you can assign that
character to the user keyboard for easy access. See

“Making User Key Assignments” on page 217 for more information.

694 C: HP 48 Character Codes

Character Codes (0 — 127)

NUM CHR NUM CHR NUM CHR NUM CHR

i@ = & ® S '

1 = ! 23] A = &

z = " B E S b

3 = # &7 C 99 =

4 = ¥ i3 [1688 d

o = = =% E 181 =

& = v F 162 f

7 = ! 71 G 183 o

a = T T2 H 14 h

o = a Ta I 1685 i

18 " * 74 J 168 d

11 = = + 7o E 187 k

1z = 44 ’ TE L 103 1

o m 45 - T I 1@3 I

14 - 3 . T H 114 n

15 = 47) 0 111 o

16 = 45 G oE F 11z F
17 . 49 1 21 [11= J

o u 56 2 a2 F 114 -

i = 51 = o3 = 115 =

2/ = 52 4 o4 T 115 1

= 55 5 25 1 117 u

'~ . o9 = 26 u 113 L

23 u a5 T av I 113 1)

24 n 55 = 2a 128 3

25 = 57 o a9) 121 iy

26 = 55 : SE z 12z =

27 - a3 : 21 L 12z C

28 = G < Sz 124 i

=29 = &1 = Q3] 25 ;

20 u a2 24 126

=3 | 53 7 Q5 _ 127 i
C: HP 48 Character Codes 695

Character Codes (128 — 255)

NUM CHR NUM CHR NUM CHR NUM CHR

[y D
l

o
t

I i
+

.

D
]

'._
|_:

|
|:
|E
|

] L
R

g

-
I
k

L
+

=] f
-

eT

o
o
l

I
e

L

Ml
e

T
T

L

T
e
0

[
0

I

i
T
O
o
0
[
o

o w
0

I

i
T

w
O
o
n
D

A
o

u
l

i

D
o
-

D

T
N

o
o

o
o
]

w
0

12

12

1=

1=

13

1=

1z

1z

1z

1z I
oo

=
W
b
b

T
T

o
0
0
0

- Ll
g
l
P1

Su
o
R
M

1
5

e
qT
e
T
T
4

R
e

Qe

T
T
T

T
L
e
0
[
e

=

T
o
e

e
e

[
T

[
T

O[
TR

O[
T

T
L
e
O

[
l
o

i

00
P
O
T
T

T
P

T
l

o
l

[
0

T
l

T
l

T
l
e
e
e
e
e
e
e

0
3
0
3
2
<

o
o
)
e " [2] 4

145 { 7 * A3 f1 i

14& A = 2 16) &

147 = o 3 =11 I 5

143 i = ’ 212 & &

143 a 1 u 21z i &

1568 = 1 214 i &

151 F =

153 T 1 217 0 0

154 i = 21a i G

1535 & # 12 0 i

156 4 i {0 i
=57 0 4 g

¥ B

— J
u
J
u =+

b
t
b

e
k
b

e
k
b

pe
b

e
k
b
b
b
b
b
b
b
b
b
b

e
k
b
b
b

e
k

e
k

pe
k

pe
k
b

e
k

e
k
b
e
k

D Thkgte

696 C: HP 48 Character Codes

Menu Numbers

D

The following table lists the HP 48 built-in menus and the corresponding
menu numbers.

Menu # Menu Name Menu # Menu Name

0 Last Menu 19 /O SETUP

1 CST 20 MODES

2 VAR 21 MODES Customization

3 MTH 22 MEMORY

4 MTH PARTS 23 MEMORYArithmetic

5 MTH PROB 24 LIBRARY

6 MTH HYP 25 PORT O

7 MTH MATR 26 PORT 1

8 MTH VECTR 27 PORT 2

9 MTH BASE 28 EDIT

10 PRG 29 SOLVE

11 PRG STK 30 SOLVE SOLVR

12 PRG OBJ 31 PLOT

13 PRG DISP 32 PLOT PTYPE

14 PRG CTRL 33 PLOT PLOTR

15 PRG BRCH 34 ALGEBRA

16 PRG TEST 35 TIME

17 PRINT 36 TIME ADJST

18 1/0 37 TIME ALRM

D: Menu Numbers 697

puewwodS1INN6SSSVYIS1INN
OSIAS1INN85a33dsSS1INN
avdS1INNLSJNILS1INN

1HOMS1INN9SJOAS1INN
TONVS1INN

0313S1INN

SS

¥S

V3dVS1INN

ONITSLINN
dW31S1INN€SBofeiedS1INN
SS34dS1INNcSTAOWN1VIS
HMOdS1INN1SV1SR

I
T
I
F
I
R
I
F
I
R
I
R
E
R

OYN3S1INN0S138INIL6€
30404S1INN6%1d4WYV3NIL8¢

#Nuaw

#NuUap

E

Listing of HP 48 System Flags

This appendix lists the HP 48 system flags in functional groups. All flags
can be set, cleared, and tested. The default state of the flags is clear,
except for the Binary Integer Wordsize flags (flags -5 through —10).

System Flags

Flag Description

Symbolic Math Flags

-1 Principal Solution.

Clear: QUAD and ISOLreturn a result representing all
possible solutions.

Set: QUAD and ISOL return only the principal solution.

-2 Symbolic Constants.

Clear: Symbolic constants(e,i, -, MAXR, and MINR) retain
their symbolic form when evaluated, unless the Numerical
Results flag -3 is set.

Set: Symbolic constants evaluate to numbers, regardless of
the state of the Numerical Results flag -3.

-3 Numerical Results.

Clear: Functions with symbolic arguments, including
symbolic constants, evaluate to symbolic results.

Set: Functions with symbolic arguments, including symbolic
constants, evaluate to numbers.

-4 Not used.

E: Listing of HP 48 System Flags 699

System Flags (continued)

Flag Description

Binary Integer Math Flags

-5 Binary Integer Wordsize.

thru Combined states of flags -5 through - 10 set the wordsize
from 1 to 64 bits.

-10

Binary Integer Base.

-11 HEX: —11 set, —12 set.

and DEC: -11 clear, —12 clear.

-12 OCT: - 11 set, —12 clear.

BIN: —11 clear, -12 set.

-13

and Not used.

-14

Coordinate System Flags

—-15 Rectangular: —15 clear, —16 clear.

and Polar/Cylindrical: —15 clear, —16 set.

-16 Polar/Spherical: —15 set, —16 set.

Trigonometric Angle Mode Flags

-17 Degrees: —17 clear, —18 clear.

and Radians: —17 set, —18 clear.

-18 Grads: —17 clear, —18 set.

Complex Mode Flag

-19 Clear:-—V2 and [*](2D] create a 2-dimensional vector from

2 real numbers.

Set:—V2 and [*](2D] create a complex number from 2 real
numbers.

700 E: Listing of HP 48 System Flags

System Flags (continued)

Flag Description

Math Exception-Handling Flags

—-20 Underflow Exception.

Clear: Underflow exception returns 0.

Set: Underflow exception treated as an error.

-21 Overflow Exception.

Clear: Overflow exception returns +9.99999999999E499.

Set: Overflow exception treated as an error.

-22 Infinite Result Exception.

Clear: Infinite result exception treated as an error.

Set: Infinite result exception returns +9.99999999999E499.

—-23 Negative Underflow Indicator.

—-24 Positive Underflow Indicator.

—-25 Overflow Indicator.

—-26 Infinite Result Indicator.

When an exception occurs, corresponding flag (-23
through -26) is set, regardless of whether or not the
exception is treated as an error.

=27

thru Not used.

-29

E: Listing of HP 48 System Flags 701

System Flags (continued)

Flag Description

Plotting and Graphics Flags

-30 Function Plotting.

Clear: For equations of form y = f(x), only f(x) is drawn.

Set: For equations of form y = f(x), separate plots of y and
f(x) are drawn.

-31 CurveFilling.

Clear: Curve filling between plotted points enabled.

Set: Curvefilling between plotted points suppressed.

-32 Graphics Cursor.

Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on
dark background.

1/0 and Printing Flags

-33 1/0 Device.

Clear: 1/0O directed to serial port.

Set: 1/0 directed to IR port.

—34 Printing Device.

Clear: Printer output directed to IR printer.

Set: Printer output directed to serial port if flag —33 is clear.

-35 I/O Data Format.

Clear: Objects transmitted in ASCII form.

Set: Objects transmitted in memory image form.

-36 RECV Overwrite.

Clear: If file name received by HP 48 matches existing

HP 48 variable name, new variable name with number

extension is created to prevent overwrite.

Set: If file name received by HP 48 matches existing HP 48
variable name, existing variable is overwritten.

702 E: Listing of HP 48 System Flags

System Flags (continued)

Flag Description

1/0 and Printing Flags (continued)

—-37 Double-Spaced Printing.

Clear: Single-spaced printing.

Set: Double-spaced printing.

-38 Linefeed.

Clear: Linefeed added at end of each print line.

Set: No linefeed added at end of each print line.

-39 1/O Messages.

Clear: 1/0 messages displayed.

Set: 1/0 messages suppressed.

Time Management Flags

Clock Display.

Clear: Ticking clock displayed only when TIME menu
selected.

Set: Ticking clock displayed at all times.

—41 Clock Format.

Clear: 12-hour clock.

Set: 24-hour clock.

—42 Date Format.

Clear: MM/DD/YY (month/day/year) format.

Set: DD.MM.YY (day.month.year) format.
 Repeat Alarms Not Rescheduled.

Clear: Unacknowledged repeat appointment alarms
automatically rescheduled.

Set: Unacknowledged repeat appointment alarms not
rescheduled.

E: Listing of HP 48 System Flags 703

System Flags (continued)

Flag Description

Time Management Flags (continued)

-44 Acknowledged Alarms Saved.

Clear: Acknowledged appointment alarms deleted from
alarm list.

Set: Acknowledged appointment alarms saved in alarm list.

Display Format Flags

—-45 Number of Decimal Digits.

thru Combined states of flags —45 through —48 sets number of
decimaldigits in Fix, Scientific, and Engineering modes.

-48

Number Display Format.

—-49 Standard: —49 clear, —50 clear.

and Fix: —49 set, —50 clear.

-50 Scientific: —49 clear, —50 set.

Engineering: —49 set, —50 set.

-51 Fraction Mark.

Clear: Fraction mark is . (period).

Set: Fraction mark is , (comma).

-52 Single-Line Display.

Clear: Display gives preference to objectin level 1, using up
to four lines of stack display.

Set: Display of object in level 1 restricted to one line.

-53 Precedence.

Clear: Certain parenthesesin algebraic expressions
suppressed to improve legibility.

Set: All parentheses in algebraic expressions displayed.

-54 Not used.

704 E: Listing of HP 48 System Flags

System Flags (continued)

Flag Description

Miscellaneous Flags

-55 Last Arguments.

Clear: Operation arguments saved.

Set: Operation arguments not saved.

-56 Error Beep.

Clear: Error and BEEP-command beeps enabled.

Set: Error and BEEP-command beeps suppressed.

—-57 Alarm Beep.

Clear: Alarm beep enabled.

Set: Alarm beep suppressed.

-58 Verbose Messages.

Clear: Prompt messages and data automatically displayed.

Set: Automatic display of prompt messages and data
suppressed.

-59 Fast Catalog Display.

Clear: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation and equation
name.

Set: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation name only.

-60 Alpha Lock.

Clear: Alpha lock activated by pressing [a] twice.

Set: Alpha lock activated by pressing [a] once.
 -61 User-Mode Lock.

Clear: 1-User mode activated by pressing (¢9) (USR] once.
User mode activated by pressing (q]([USR] twice.

Set: User mode activated by pressing [+a]([USR] once.
E: Listing of HP 48 System Flags 705

System Flags (continued)

Flag Description

Miscellaneous Flags (continued)

-62 User Mode.

Clear: User mode not active.

Set: User mode active.

Vectored [ENTER].

Clear: [ENTER] evaluates command line.

Set: User-defined [ENTER] activated.

Index Wrap Indicator.

Clear: Last execution of GETI or PUTI did not increment
index to first element.

Set: Last execution of GETI or PUTI did increment index to

first element.

706 E: Listing of HP 48 System Flags

Operation Index

This index contains reference information for all operations in the HP 48.
For each operation,this index shows:

Name, Key, or Label. The name, key, or menu label associated with
the operation. Operation names appear as keys or menu labels.

Description. What the operation does (orits value if a unit).

Type. The type of operation is given by one of the following codes.

Type Code Description

0 Operation. An operation that cannot be included in
the command line, in a program, or in an algebraic.

C Command. An operation that can be included in
programs but not in algebraics.

F Function. A command that can be included in
algebraics.

A Analytic Function. A function for which the HP 48
provides an inverse and derivative.

u Unit.

Keys. The keys to access the operation. Keystroke sequences preceded
by “...” can be accessed through more than one menu—to see the
keystrokes represented by the “... ”, refer to the listing in this index for
the operation that immediately follows the “...”. Operations in multi-
page menus show the applicable menu page number. Operations that are
not key-accessible are identified by “Must be typed in.”

Operation Index 707

Page. Where the operation is described in this manual.

Theentries in this index are arranged as follows:

Page where

What operation does operation described

| Keys to access operation

ATANH I._) Arc hyperbolic tangent 137

A '

chain Chain, length (20.1168402337 m)
* U LEHG%;s

Type code Menu page Value of a unit

Name of operation

Operations whose names contain both alpha and special characters are
listed alphabetically; operations whose names contain special characters
only arelisted at the end ofthis index.

Name, Key Description Page
or Label Type, Keys

a Are, area (100 m?).

U [«]UNITS]
A Ampere, electric current (1 A).

U [«]INITS] p.2

A Angstrom, length (1 x 1071 m)

U [«@]UNITS] LEHGp.4

708 Operation Index

Name, Key

or Label
Description
Type, Keys

Page

Associate left.

O [%1][EQUATION] (@] RULES
Executes until no change in
subexpression.

O [«][EQUATION] (€] Eiil

405

410

Associate right.

O [«)[EQUATION] [«] RULES
Executes |H

subexpression.

0 [+ TION] (€] RUL

405

410

ABS Absolute value.

E

MTH

F YEC

148

ACK Acknowledges displayed past due alarm.

C [«w]mME]

447

 ACKALL Acknowledges all past due alarms.
Ce H

 447

Operation Index 709

 A [«lo]

Name, Key Description Page
or Label Type, Keys

ACOS Arc cosine. 140

A [%l][ACOS]
ACOSH Arc hyperbolic cosine 137

A H
acre Acre, area (4046.87260987 m?).

U [«UNITS] p2
Selects TIME ADJST (adjust) menu.

O [«)ME] A
Add fractions. 409

O [%)[EQUATION] [«] RULES
[«2)[ALGEBRA] Selects ALGEBRA menu.

O [«](ALGEBRA]
[])(ALGEBRA] Selects Equation Catalog. 259

O [](ALGEBRA]
ALOG Common (base 10) antilogarithm. 137

710 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Selects TIME ALRM (alarm) menu.

O [«w)(TME]

AND Logical or binary AND.

MTH

F [RG

210

493

Selects UNITS ANGL menu.

O [«][ONTS] p.3

APPLY Returns evaluated expression(s) as
argument(s) to unevaluated local name.

F [(«J(ALGEBRA] p.2 A

ARC Draws arc in PICT from 4, to 6, with center
at (x,y) and radius r.

C [Rg)

339

ARCHIVE Makes backup copy of HOME directory.

C [«a][MEMORY] p.3 HRC

648

arcmin Minute of arc, plane angle.
(4.62962962963 x 10~°)

U [QJUNITS]p3

 arcs Second of arc, plane angle.
(7.71604938272 x 1077)

U [©)NTS] p3

Operation Index 711

Name, Key

or Label

Description
Type, Keys

Page

HRER Calculates and displays area under
function graph between two x-values
specified by the mark and cursor; returns
area to stack.

o HREHR

308

Selects UNITS AREA menu.

O [«w](UNITS]

Returns polar angle 6.

F [MTH)

166

Enables/disables LASTARGrecovery.

O [%]MODES] p.2 |

221

Returns array elements to stack.

C Must be typed in.

Combines numbersmto array

C [PRG]

90

Switches between ASCII andbmary mode.

O [wJi/0) SETUE AS
617

ASIN Arc sine.

A [wJ[AsN)
140

ASINH Arc hyperbolic sine.

A

 137

712 Operation Index

Name, Key Description Page
or Label Type, Keys

ASN Makes a single user-key assignment. 217

C [)MODES]
ASR 1-bit arithmetic shift right. 210

C p3
ATAN Arc tangent. 140

A [%](ATAN]
ATANH Arc hyperbolic tangent. 137

A _HYP HTHH
atm Atmosphere, pressure (101325 kg/m-s?)

U [«]UNTS]p2 ER .HIM

ATTACH Attaches specified library to current 651
directory.

C [«)[MEMORY] p.2 § B

(©ON)) Aborts program execution, aborts 54
command line; exits special environments;

clears messages.

o
AU Astronomical unit, length

(1.495979 x 10! m).

U [«J[UNITS] (LEHEp.2

Operation Index 713

Name, Key
or Label

Description
Type, Keys

Page

AUTO Scales y-axis.

... BLOT

C [)[PLOT]

293

BUI0 Scales y-axis; then plots equation.

... FLUOTR

O [e][PLoT]

295

AXES

Sets specified coordinates of axes
intersection;stores labels.

. ELOTEp.3
C [(eJPLOT) p3 ¢

Recalls axes intersection to stack

 0 [BIFLOT p3)

320

319

Switches clock between AM and PM.

O [«)ME]

Switches alarm time betweenAMand PM.

O [«)[mME]

442

444

Barn, area (1 x 102 m?).

U [«]UNTS] AREA

Bar, pressure (100000 kg/ms2)

U [«]UNTS) p.2 ERESS Bl

BAR Selects BAR plot type.

C ... PTYFE

 328

714 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

BARPLOT Draws barplot of data in XDAT.

C [«IETAT) p.3 &

378

Selects MTH BASE menu.

o "

Sets one of four available baud rates.

C [«Ii/9) sET

617

Barrel, volume (.158987294928 m°).

U [«w]UNITS] %01 -

p4

Sounds beep.

c CTRLp3 EE

523

Enables/disables error BEEP.

O [«1)(MODES] EEEF

221

BESTFIT Selects statistics modelyielding largest
correlation coefficient (absolute value) and
executes LR.

C [«IETAT] p4 MO

377

BIN Sets binary base.

MTH] (BHASE

C [«wa] HODES p4 BIN

208

 BINS Sorts elements in independent variable

column of ZDAT into N + 2 bins (upto a
maximum of 1048573 bins).

C [IETAT)p2 (B

 382
Operation Index 715

Name, Key
or Label

Description
Type, Keys

Page

BLANK Creates blank graphics object.

343

BOX Draws box with opposite corners defined
by specified coordinates.

C DsP

339

Draws box with opposite corners defined

by markand cursor.

 0 E]m p.2SHOE

337

Becquerel, activity (1 1/s).

U [«JUNTS] p3

Selects PRG BRCH (program branch)
menu.

O [PRG] ‘ERCH

Btu International Table Btu, energy
(1055.05585262 kg-m?/s?)

U [«JUNITS] p.2

bu Bushel, volume (03523907 m3)

U [«]UnNITS] !

BUFLEN Returns number of characters in serial

buffer.

C («i/Q)p3 B

 634

716 Operation Index

Name, Key Description Page
or Label Type, Keys

BYTES Returns object size (in bytes) and 101
checksum for object.

C [«)MEMORY]
B—R Binary-to-real conversion. 210

c __
c Speed of light (299792458 m/s).

C Coulomb,electric charge (1 A-s).

U [«]UNTS)p2 |

°C Degrees Celsius, temperature.

U [@)INTS) p2 T
cal Calorie, energy (4186kgm?/s?)

U [@@ONTS)p.2 |
CASE Begins CASE structure 498

C [FRG EF

Types CASE THEN END END 498

O [PRG) =]
Types THEN END 498
O [FRA iE _

Operation Index 717

Name, Key

or Label

Description
Type, Keys

Page

Selects Equation Catalog.

(«)PLoT] |
(+2)(SOLVE]

O [J(ALGEBRA]
Selects STAT Catalog.

O [«](STAT) CHT
Selects Alarm Catalog.

O (eJ(TME]

259

370

449

cd Candela, luminous intensity (1 cd).

U [«]UNITS] p.3 LIGHTp2

CEIL Returns next greaterinteger.

- PARTS p.3 CEIL
148

 Redraws graph with center at cursor
position.

 i

GRAPH] 'CEF:

o 302

718 Operation Index

Name, Key Description Page
or Label Type, Keys

CENTR Sets center of plot display at specified 295
o y) coordmates

B p.2

C [E]m p.2
Recalls plotcenter coordmates to stack. 293

o Emp2 (@)
CF Clears specified flag. 516

%CH Returns % change from Ievel 2 tolevel 1. 138

F [MTH) EARTSp.2 @%

chain Chain, length (20 1168402337 m)
U [)ONTS) -

CHR Converts character code to one-character 90
string.

C p.3

Ci Curie, activity (3.7 x 101 1/s). U [QJuNTS]p3

Operation Index 719

Name, Key

or Label

Description
Type, Keys

Page

Draws circle with center at the mark and

radius equalto the distance from cursor to
mark.

 o E]m p2 {

337

CKSM Selects one of three avallable checksum

error-detect schemes.

C [(«Ji/O) SETUF CKSM

618

CLEAR Clears stack.

C [2JCLR)
64

CLR In EquationWriter entry mode, clears
screen.

O [«9)(EQUATION] [*](CLR]
Clears PICT

o [E]—[E]m

230

303

 Switchesticking clock dlsplay on and off.

O [HIMODES] p2

 221

720 Operation Index

Name, Key Description Page
or Label Type, Keys

CLKADJ Adds specified number of clock ticks to 443
system time.

C [wJ[ME H
CLLCD Blanks stack display. 520

c .
CLOSEIO Closes 1/0 port. 615

C «Ji/Q)p2 ¢
CLz Purgesstatistical data in }_‘DAT 368

C [«JETAT)
CLUSR Purgesall user variables.

C Must be typed in.

CLVAR Purgesall user variables. 115

C [J(PURGE]
cm Centimeter,Iength (01 m)

Enables/dlsablesIast command line 221

recovery.

O [«)(MODES] p.2

 cm”™2 Square centimeter, area (1 x104 m?).

U [«)UNTS)

Operation Index 721

Name, Key
or Label

Description
Type, Keys

Page

cm”™3 Cubic centimeter, volume (1 x 1076 m3).

U [©]UNTS)

cm/s Centimeters per second, speed (.01 m/s).

U [«JuNITS]

Switches curve filling on and off.

O [«)(MODES] p.2

221

CNRM Calculates column norm of array.

Cc p.2

359

Inserts a row of zeros at current column in

MatrixWriter application.

O [?)MATRIX] p.2

351

Deletes current column in MatrixWriter

application.

O [)MATRIX] p.2

351

Collectslike terms in expression.

C [«1)(ALGEBRA

395

Collects like terms in specified
subexpression.

O [«][EQUATION] (¢

402

CoLZ Specifies dependent and independent
columns in XDAT.

C Must be typed in.
722 Operation Index

Name, Key Description Page
or Label Type, Keys

CcOoMB Returns number of combinations of n items 147
taken m at a time.

F ER

CON Creates constant array. 359

c
CONIC Selects CONIC plot type. 327

Cc

CONJ Returns complex conjugate. 166

F ERE COHJ
CONT Continues halted program. 520

C [%(ConT]
CONVERT Converts unit object to dimensions of 194

specified compatible unit.

Displays cursor coordinates at bottom left 302

 of display.

O [«J(GRAPH] COUR

Operation Index 723

Name, Key Description Page

or Label Type, Keys

CORR Calculates correlation coefficient of 377
statistical data in LDAT.

C [«[STAT] p.4 CORR

CcOoSs Cosine. 140

A
COSH Hyperbolic cosine. 137

A [MTH] H:
cov Calculates covariance of statistical data in 377

LDAT.

C «@IETAT)p4 oy

CR Causes printer to do carriage return/line 608
feed.

C [w[PRINT]

CRDIR Creates a directory. 120

C [«](MEMORY] €
CROSS Cross product of 2- or 3-element vector. 353

C [MTH] & g
Selects CST (custom) menu. 212

O [csT]
Returns contents of CST variable. 213

724 Operation Index

Name, Key Description Page
or Label Type, Keys

ct Carat, mass (.0002 kg).

U [«](UnNITS] p.2
Selects PRG CTRL (program control)
menu.

o
cu US cup, volume (2.365882365 x 10~* m°).

U [«]NTS] p-3
C—PX Converts user-unit coordinates to pixel 324

coordinates

C—-R Separates complex number into two real 91
numbers.

C _OEJpg2
d Day, time (86400 s).

U [«]UNTS]
Assembles or takes apart a complex 160
number or 2D vector.

O [«l(0]
Assembles or takes apart a 3D vector. 173

O [(=)(=0]
Operation Index 725

Name, Key

or Label

Description
Type, Keys

Page

Distribute left.

O [«][EQUATION] (€] E
Executes until no change in
subexpression.

O [«9)[EQUATION] [«] RUI

)

406

410

Distribute right.

Executes .[+until no change in

subexpression.

O [SI[EQUATION] (4] RULES
] ‘

406

410

DATE Returns system date.

C [«)(TIME] p.2 [HTE

455

DATE + Returns new date from specified date and
number of days.

C [«w)mME] p.2

454

—DATE Sets specified system date.

C [«){mme]

441

Sets specified alarm date.

O [wjME] ATE

445

 Sets alarm repeatinterval to n days.

O [wjmME)

 445

726 Operation Index

Name, Key Description Page
or Label Type, Keys

Halts program execution beforefirst 484
object.
0 CTRL

DDAYS Returns number of days between two 455
dates.

C [(«)(TME] p.2 DDAYS
DEC Sets decimal base. 208

MTH

C H p.4

DECR Decrements value of specified variable. 513

C [J[MEMORY] [DECR

DEFINE Creates variable or user-defined function. 107

C («)[ERA 151

Expands trigonometric and hyperbolic 409
functions in terms of EXP and LN.
0 [&)[EQUATIoN) @ F e

DEG Sets Degrees mode. 139

C [«a)MODES] p3
Deletes character under cursor. 75 O [DEL]

Operation Index 727

line.

(«©JEDT ()

0 =

Name, Key Description Page
or Label Type, Keys

Erases area whose opposite corners are 337
defined by mark and cursor.

——

Deletes all characters from cursor to start 68
of word.

(«2])(EDIT) ,
O ... (EDIT *#DEE

Deletes all characters from cursor to start 68
of line.

68
of next word.

(«1])(EDIT)
o ...

Deletes all characters from cursortoend of 68

728 Operation index

Name, Key Description Page
or Label Type, Keys

DELALARM Deletes alarm from system alarm hst 453

C [«)(TIME] ‘HERMp.2 |

DELAY Sets delay time between lines sent to 607
printer.

C [«l[PRINT] p.2
DELKEYS Clears specified user-key assignment. 219

C [r](MODES]

DEPND Specmes nameof dependent plot variable. 318

c Emp2
Recalls dependent plot variable to stack. 318

:p-2 (]
O E]m p.2 ()DE

DEPTH Returns number of objects on stack. 78
C [FRG -STKDEPTH

DET Determinant of amatnx 360
C [T

DETACH Detaches specified Iubrary from current 653
directory.

C [«)(MEMORY] p.2 [

Operation index 729

Name, Key Description Page
or Label Type, Keys

Double invert. 401

O [«][EQUATION] (¢
DISP Displays object in specified displayline. 523

' p4
C p.2

‘DHEG Double negate. 400

O [«][EQUATION] (4]

DO Begins indefinite loop. 510

c BECH
510

DOERR Aborts program execution and displays 546
specified message.

c ? p.3 DOERR
DOT Dot product of two vectors. 353

730 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Turns on pixels as cursor moves.

DRANp.2
... AUTOp.2

O [%J(GRAPH] p.2 (DOT+

337

Turns off pixels as cursor moves.

DEHHp.2

O [%)(GRAPH] p.2

337

DRAW Plots equation without axes.

... TR

C [e]PLOT

292

Plots equation with axes

O [e][PLOT

296

 DRAX Draws axes.

3

C [2JFLoT]p3 319

Operation Index 731

 through stack level1.

O

Name, Key Description Page
or Label Type, Keys

DROP Drops object in level 1; moves all remaining 64
objects down onelevel.

C [xl(DROP]
DROPN Drops n objects from stack 78

C g2 |

Dropsall objects from stack at and below 71
pointer.

0 p.2 il

DROP2 Dropsfirst two objects from stack. 78

C g2 DREOEZ

Selects PRG DSPL (program display)
menu.

o
DTAG Removesall tags from object. 91

C g.2

DUP Duplicates object in level 1. 65

C g.2

DUPN Duplicates n objects on stack. 78
c . pg.2 DURH:

Duplicates all objects on stack from pointer 71

732 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

DUP2 Duplicates objects in level 1 and level 2.

C pg.2
78

dyn Dyne, force (.00001 kg-m/s?).

U [«][UNITS]p.2 E

Degrees-to-radians conversion

F YECTEp2

142

Symbolic constant e (2.71828182846).

F d®lE
144

Copies object in current level to command
line.

)

71

 Returns contents of EQ to command line

for editing.

(«J[PLOT] EDEGQ
O [«](SOLVE] E

 256

Operation Index 733

Name, Key

or Label

Description

Type, Keys

Page

EDIT When command line not active, copies
level-1 object into command line and
selects EDIT menu.

When command line active, selects EDIT

menu.

O [w]EDT]
Selects EDIT menu.

O [P)MATRIX] («](EDIT]
Returns equation to command line and
selects EDIT menu.

O [«1)(EQUATION] [7][EDIT]

Edits current stack level.

0 tETE(@]

66

350

242

72

Copies selected equation into command
line and selects EDIT menu.

(+2)(SOLVE]
O [J(ALGEBRA] =
Copies subexpression into command line
and selects EDIT menu.

O [(%)[EQUATION] (¢ EDIT
Copies selected matrix to MatrixWriter
application.

O [«lETAT)
Edits current matrix cell.

O [2J(MATRIX]
Displays selected alarm and selects ALRM
(alarm) menu.

O [w)[mME]

259

244

371

351

450

734 Operation Index

Name, Key Description Page
or Label Type, Keys

EDITE Copiesstatistical data in ZDAT to 368
MatrixWriter application.

O [«wJ[ETAT) EDITZ
EEX Types E or moves cursor to existing 47

exponent in command line.

0 [EEX]
Selects UNITS ELEC (electrical) menu.
0 [FIONTS) p2 ‘ELET

erg Erg, energy (0000001 k m2/sz)
U [©)ONTS] p2 &

ELSE Begins ELSE clause. 496

C [FRG :

END Endsprogram structures 494

ENG Setsdlsplaymode toEnglneenng 58

C [«J(MODES]
Selects UNITS ENRG (energy) menu.

O [wJuNITS] p.2 EE
Enters contents of command line. If no 99
command line is present, executes DUP.

o

Operation Index 735

Name, Key

or Label
Description
Type, Keys

Page

ENTRY Switches Algebraic- and Program-entry
modes.

O [PJENTRY]

77

EQUATION Selects EquationWriter application.

O [«](EQUATION

Adds selected equation to list in EQ.

(\J(PLOT]
(«2)(SOLVE]

O [](ALGEBRA]
Removesthe last entry from the list in EQ.

(«)(PLOT] («
()(SOLVE]

O [](ALGEBRA] (]

272

272

EQ— Separates equation into left and right sides.

C [PRG)

91

ERASE Erases PICT.

 C [@FLoT E 292

736 Operation Index

Name, Key Description Page
or Label Type, Keys

ERRM Returns last error message 542

C |

ERRN Returns last error number 542

C [PrG
ERRO Clearslast error number 542

C [PRG]
eV Electron volt, energy

(1.60219 x 10~kg-m?/s?)

U [«](UNITS] p.2 EHEGp.2
EVAL Evaluates object. 98

c
Sets alarm execution action. 444

O [«I[MME] ALEM (E:
Recalls alarm execution action to stack. 444

O [«x](TIME] HALE
EHECSE Shows alarm-execution action. 450

E]m SCHTS ENEDS

O [)TIME] EE

Operation Index 737

Name, Key Description Page
or Label Type, Keys

Exits Selection enwronment 399

O [«J[EQUATION] [«] (E
Exits FCN (function) menu. 308

o ... 1r

Exits ZOOM menu. 305

O M ERIT

EXP Constante raised to power of object in 137
level 1.

A [«
EXPAN Expands algebraic object. 396

C [«](ALGEBRA]
EXPFIT Sets curve-fitting model to exponentlal 377

C [«][STAT) p4 HOCDL

EXPM Natural exponentlal minus 1 (e* - 1). 137

A [MTH] HYF p.2 EHFHM

Highlights subexpression for which specified 247
object is top level function.

O [«][EQUATION] (] EXFE 398

Returns expressnon value or equation values. 265

O ... Ei

Moves graphics cursor to nearest extremum, 308

displays coordinates, and returns them to
stack.

o

Replace power-product with power-of- 408
power.

O @

738 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

Replace power-of-power with power-
product.

O [w][EQUATION] (4] |

408

Farad, capacitance (1 A>s*/kg-m?).

U [«JuNTS)p2 |

Degrees Fahrenheit, temperature

U [«JUNTS]p.2

Switches displaying equation names only
and names plus contents of equations.

260

o 'p.2 iFAS
fath Fathom, length (1.82880365761 m).

U [«JUNITS] p3 E
fom Board foot, volume (.002359737216 m°).

U [«)UNITS) p4 EE
fc Footcandle, illuminance

(.856564774909 cd/m?)

U [«)(UNITS] p.3

 Selects GRAPHICS FCN (function) menu.

o
Operation Index 739

Name, Key Description Page
or Label Type, Keys

FC? Tests if specified flag is clear. 516

TESTp3 E

C [c)(MODES] p.3
FC?C Testsif specified flag is clear, then clearsit. 516

o p.3

Fdy Faraday, electric charge (96487 A-s).

U [«)[ONITS] p.2 EEECp2 @FLW

fermi Fermi, length (1 x 10~ m).

U [«J[UNITS] LEHGp4 FEEHI

FINDALARM Returnsfirst alarm due after specified time. 454

C [«J[MME] HLEHWp.2 FIHDA

FINISH Terminates Kermit server mode. 615

C [«li/0] FIHIz

FIX Selects Fix display mode. 58

C [«JMODES] FEIx
flam Footlambert, luminance

(3.42625909964 cd/m?)

U [«)(UNITS] p.3 LIGHT F

740 Operation index

Name, Key Description Page
or Label Type, Keys

FLOOR Nextsmaller integer. 148

58

FOR 506

C ERC
Types FOR NEXT. 506

0 ‘BRCH [«)|

Types FOR STEP. 508

0 ‘ERCH() =

FUOELCE Selects UNITS FORCE menu.

O [«9)(UNITS] p.2 FUOREE

FP Returns fractional part of a number. 148

F FHARTEp3

FREE Replaces object in RAM with new copy of 649

object.

C [«a)(MEMORY] p.3 ER
FREEZE Freezes one or more of three dlsplay areas. 344

C [PrG 523

Operation Index 741

Name, Key Description Page
or Label Type, Keys

FS? Tests if specified flag is set. 516

C [r»)(MODES] p.3
FS?C Testsif specified flag is set, then clearsit. 516

e

C [eJ(MODES] p.3
ft International foot, length (3048 m)

U [«)ONTS] LEHGE FT
ft"~2 Square foot, area (09290304 m2)

U [«)[UNITS] FAREEHR

ft°3 Cubic footvolume (028316846592 md).

ftuS Survey foot,Iength (304800609601 m)

U [w][UNITS] LEHGp3 | :

ft/s Feet/second, speed (3048 m/s)

U [«@]UNITS] SFEED F
ft«lbf Foot-poundf, energy

(1.35581794833 kg-m?/s?).

U [«]UNITS] p.2 EF

742 Operation Index

Name, Key Description Page
or Label Type, Keys

FUNCTION Selects FUNCTION plot type. 327

C ... FIYFE ElHE

FiEn Displays value of function at x-value 308
specified by cursor. Returns function value

to stack.

O ... FCH p2 Figs

Plots first derivative of function, replots 309
function, and adds derivative to EQ.

O ... FiH p2 E!

g Gram, mass (.001 kg).

U [«)[ONITS] HE=E o

ga Standard freefall, acceleration

(9.80665 m/s?).
U [«]UNITS] SFEELp2 ©&H

gal US gallon, volume (.003785411784 m?).

U [«]UNTS) %ol p2 GAL

galC Canadian gallon, volume (.00454609m3).

U [«][UNTS) woL p2 GHLGC
galUK UK gallon, volume (.004546092 m°).

U [«JUNITS] 4oL p2 GALW

GET Gets element from array orlist. 91

C SHEYp4 SGET
Operation Index 743

Name, Key

or Label

Description
Type, Keys

Page

GETI Gets element from array orlist and
increments index.

C [PRG 0EJp4 GETI

92

of Gram-force (.00980665 kg-m/s?).

U [«)[ONITS] p.2 FORCE | @

GOR Superposes graphics object onto
graphics object.

C p3 GOR

343

G Sets top-to-bottom entry mode.

O [P)MATRIX] G

357

G0 Sets left-to-right entry mode.

O ([PMATRIX) GO+
351

GRAD Selects Grads mode.

C [«J(MODES] p.3 GRAD

139

grad Grade, plane angle (.0025).

U [«JUNITS] p.3 HHGL GRAD

grain Grain, mass (.00006479891 kg).

U [«]UNITS) . p.2 GRAIH

GRAPH Enters Graphics environment.

C [«](GRAPH]
301

(GRAPH] Invokes scrolling mode.

(«2)[EQUATION] [#1](GRAPH]
'[IRAN [\)(GRAPH]

(+2)[GRAPH]
o [E]— (+2)(GRAPH]

 229

303

744 Operation Index

Name, Key Description Page
or Label Type, Keys

—GROB Converts ob]ect into graphics object. 342

C [PRG] FL p3

GXOR Superposes inverting graphics object onto 343
graphics object.

c _DEPLp3
Gy Gray, absorbed dose (1 m?/s?).

U [wJUNTS] p.3
h Hour, time (3600 s).

U [«)UNTS]
H Henry, inductance (1 kg-m?/A-s?).

U [@JUNITS] p.2 :
*H Adjusts vertical plotscale. 319

c ... p.3

ha Hectare, area (10000 mz)

U [«)UNTS]
HALT Halts program execution. 484

c 523

HEX 208

Operation Index 745

Name, Key Description Page
or Label Type, Keys

HISTPLOT Draws histogram of data in XDAT. 378

C [«)[STAT) p.3 HISTE

HISTOGRAM Selects HISTOGRAM plot type. 328

C ... BI¥YEEp.2 HIST

HMS + Adds in HMS format. 142

C [«J[MME] p3 | 457

HMS - Subtracts in HMS format. 142

C [«)[TME] p.3 HME= 457

HMS— Converts from HMS to decimal format. 142

C [(«)(TIME] p.3 HHEZF 456

—HMS Converts base 10 number to HMS 142
format.

C [«](TIME] p.3 HHE 456

HOME Selects HOME directory. 122

C [e](HOME]
CHOURE Sets alarm repeat interval to n hours. 445

o E]-HLFM FF

hp Horsepower, power
(745.699871582 kg-m?/s3).

U [€JUNITS) p.2 (FOWE @ HFE

Increments time by one hour. 443
O [@IMME ACiS _

Decrements time by one hour 443

O [w][MME] ADJE

746 Operation Index

Name, Key Description Page
or Label Type, Keys

HYP Selects MTH HYP (math hyperbolic) menu.

o
Hz Hertz, frequency (1/s).

U [«]UNTS] TIH
i Symbolic constant i. 144

F (o[«
IDN Creates identity matrix of specified size. 360

C MBIR IDH

IF Begins test clause. 494

c BRCH|1E
Types IF THEN END. 494

0 =
Types IF THEN ELSE END. 496

o ERCH[@)I1E

Operation Index 747

 U [@JuNTS)

Name, Key Description Page
or Label Type, Keys

IFERR Beginstest clause. 543

543

545

500

IFTE IF-THEN-ELSE functlon 500

F [FRG |
M Returns imaginary part of complex number 166

or array.

F BARIS 1N
in Inch, length (.0254 m)

U [«JUNTS]
in™2 Square inch, area (.00064516 m?)

U [«)UNTS)
in™3 Cubic inch, volume (000016387064 m’).

748 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

INCR Increments value of specified variable.

C [)(MEMORY]

513

INDEP

()

Specifies independent variable in a plot.

C [eJFLoT)
Recalls independentvariable to stack.

()1
o [Em ()1

294

293

inHg Inches of mercury, pressure

(3386.38815789 kg/m-s?).

U [«](UNITS] p.2 BRES

inH20 Inches of water, pressure (24884 kg/ms2).

U [«J[UNITS] p.2 ERE

INPUT Suspends program execution, displays

message, and waits for data.

C [rg) p-2 .

524

 Switches between msefl/replace character.

O [«IEDT] 1IH

 68

Operation Index 749

Name, Key
or Label

Description
Type, Keys

Page

INV Reciprocal.

A

61

Integer part of real number

F P p.3

148

Switches IR and Wire transmission modes.

 0 Q@ & TR
617

Moves graphics cursor to closest

intersection in two-function plot, displays
intersection coordinates, and returns
coordinates to stack.

o

308

ISOL Isolates variable on one side of equation.

C [«J[ALGEBRA] 150l

389

o)

(2]0/9)

Selects 1/0 (input/output) menu.

O /o]
Selects Kermit server.

O [2I/0]
624

Joule, energy (1 kg-m?/s?).

U [«][UNITS] p.2
 Kelvins, temperature (1 K).

U [«lUNTS]p2 TE

750 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

kecal Kilocalorie, energy (4186 kg-m?/s?)

U [«@]UNTS] p.2

Clears all levels above currentlevel.

72

KERRM Returns text of most recently-received
KERMIT error packet.

C [wIi/Q)p2

615

KEY Returns numberindicating last key

pressed.

c p2

540

Removes menu labels.

3
O [«J[GRAPH] p.3 :

302

kg Kilogram, mass (1 kg).

U [QJUNITS]

KGET Gets data from another device.

C /9 Ko

615

 KILL Aborts all suspended programs.

C

 484

Operation Index 751

Name, Key
or Label

Description
Type, Keys

Page

kip Kilopound-force (4448.22161526 kg-m/s?).

km Kilometer, length (1 km).

U [«)UNITS] LEHNG p.2

km™2 Square kilometer, area (1 km?).

U [«)UNITS] AREAp.2

knot Nautical miles per hour, speed
(514444444444 m/s).

U [«)UNITS] SPEED KH

kph Kilometers per hour, speed
(277777777778 m/s).

U [«ONTS] SPEED

Liter, volume (.001 m°).

U [«JUNTS] ¥ p-2

LABEL Labels axes with variable names and

ranges.

. p.3

C [J[PLOT]) p.3 LABEL

 320

752 Operation Index

Name, Key Description Page
or Label Type, Keys

Labels axes with variable names and 302
ranges.

O [%)([GRAPH]
lam Lambert, luminance

(3183.09886184 cd/m?).

U [«)UNTS] p3 T p.2
LAST Returns previous argument(s) to stack.

C Must be keyed in.

LASTARG Returns previous argument(s) to stack. 64

C [J[LASTARG]
[LAST cMD] Displays previous contents of command 77

line.

O [«)[CAST
Selects last displayed page of previous 57
menu.

O [>)[CASTMENU]
[CAST STACK] Restores previous stack. 74
 O [«][CAST STACK

Operation Index 753

0 2 LE

Name, Key Description Page
or Label Type, Keys

Ib Avoirdupois pound, mass (.45359237 kg).

U [«]UNTS]
Ibf Pound-force (4.44822161526 kgm/sz)

U [«]UNTS] p-2 EOR
Ibt Troy pound, mass (.3732417 kg)

U [0S

LCD— Returns graphics object to stack 344
representing stackdlsplay

C

—LCD Displays specified graphics object in stack 343
display.

C [PRG
Selects UNITS LENG (Iength) menu.

O [w][LNITS]

Enters current level number|nto level 1. 72

LIBRARY Selects LIBRARY menu.

O [w][UBRARY]

754 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

LIBS Lists all libraries attached to current

directory.

C [«a](MEMORY] p.2

653

Selects UNITS LIGHT menu.

O [«w][UNITS] p.3 |

LINE Draws line between coordinates in levels 1

and 2.

C [PRG)

339

Draws line from mark to cursor.

 O [«)(GRAPH] p.2

337

TLINE Returns best-fit line for data in SDAT

according to selected statlstlcal model.

C [«IETAT p3 &

376

LINFIT Sets curve-fitting model tollnear

C [«IETAT) p4

377

LIST— Returns list elements to stack.

C Must be typed in.
 —LIST Combines specified objects into list.

C [FRg

 92
Operation Index 755

Name, Key
or Label

Description
Type, Keys

Page

sL18T Combines objects from level 1 to current
level into a list.

O ... #8IKsLIST

71

Lumen, luminous flux

(7.95774715459 x 102 cd).

U [wJUNITS) p.3 LIGHT LM

LN Natural (base e) logarithm.

A [P)N

61

LNP1 Natural logarithm of (argument + 1).

A "HYFp2 LHFL

138

LOG Common (base 10) logarithm.

A (2)og)
137

LOGFIT Set curve-fitting model to logarithmic.

C WI[STAT) p4 MODL LoOG

377

LR Calculates linear regression.

C [«@JETAT]p4 LR

376

Ix Lux, illuminance

(7.95774715459 x 10~2 cd/m?).
U [«QJUNITS) p3 LIGHT L&

lyr Light year, length

(9.46052840488 x 10> m).

U [QJUNITS] LEHGp2 LYR

Replace log-of-power with product-of-
log.

O [«][EQUATION] (€] RULES L#

408

 Replace product-of-log with log-of-

power.

O [«][EQUATION] [(«] RULES Lt»

 408

756 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

Merge-factors-left.

O [«1][EQUATION] [¢] FULES

Executes i ntil no change in

subexpress|

0 [©)[EQUATION) (@ |
B

406

410

Merge-factors-right.

O [%][EQUATION] (] |
Executes | “until no change in
subexpression.

O [%J[EQUATION] [«] RU
)

407

410

Meter,length (1 m).

U [w]uNTS]

m”™2 Square meter, area (1 m?).

U [«QJunNTS)

m”™3 Cubic meter (Stere), volume (1 m°).

U [«QJuNTS)

 MANT Mantissa (decimal part) of number.

F

 148

Operation Index 757

Name, Key Description Page
or Label Type, Keys

302

iMHES Selects UNITS MASS menu.

O [w)UNITS] MASS
TMATCH Match-and-replace, beginning with 415

subexpressions.

IMATCH Match-and-replace, beginning with top- 415
level expression.

C [«q)(ALGEBRA] p.2 &l

Selects MTH MATR (math matrices) menu.

O MATRE

Selects MatrixWriter application.

O []MATRIX]
MAX Maximum of two real numbers. 148

758 Operation Index

Name, Key Description Page
or Label Type, Keys

MAXR Maximum machine-representable real 144
number (9.99999999999E499).

F P p.4 "

MAXZ Maximum column values in statistics matrix 374
in DAT.

MEAN Calculates mean of statistical data in ©DAT. 374

C [«IETAT) p.2
MEM Bytes of available memory. 101

C [+](MEMORY]
[«1)[MEMORY] Selects MEMORY menu.

O [«a][MEMORY]
[](MEMORY] Selects MEMORY Arithmetic menu.

O [r](MEMORY]
MENU Displays built-in or custom menu.

(*)(MODES] HEH! 213
C 534

Operation Index 759

Name, Key

or Label

Description
Type, Keys

Page

MERGE Merges plug-in RAM card memory with
main memory.

C [FMEMORY] p.3 -

643

Micron,length (1 x 107° m).

U [HIONTS) (LENGp.4

MeV Mega electron volt, energy
(1.60219 x 10~ 13 kg-m?/s?).

U [wJUNTS] p.2

P2 MEW

mho Mho, electric conductance (1 A%s3/kg-m?).

U [@JUNTS)p2 (ELECp2

mi International mile, length (1609.344 m).

mi~2 International square mile, area
(2589988.11034 m?).

U [«][NTS) ARE

mil Mil, length (.0000254 m).

min Minute, time (60 s).

U [QJuNTS)

MIN Minimum of two real numbers.

F

 148

760 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

Sets alarm repeat mtervalin mlnutes

O [«)MME] (ALRHM

445

MINR Minimum machine-representable real

number (1.00000000000E ~*%).

F (MTH] PARTS p4

144

Increments system time by one minute.

O [w)MME] AD:

Decrements system time by one minute.

O [WJMME] ADJST MIN-
443

MINZ Finds minimum column values in statistics

matrix in XDAT.

C [«IETATp2 ¢

374

miUS US statute mile, length (1609.34721869 m).

U [@JUNITS] LEHNGp3 'F

miuS™2 US statute square mile, area
(25899847032 rr12)

mm

 u[:—:lm
 mmHg Millimeter of mercury (torr), pressure

(133.322368421 kg/m-s?).

U (©)[ONTS] p-2 PRES

Operation Index 761

menu.

O [«IETAT p4

Name, Key Description Page

or Label Type, Keys

ml Milliliter (cubic centimeter), volume
(11076 md).

U [@JUNTS] p.3 !
Switches multi-line and single-line display. 221

O [«aJ(MODES] p.2
MOD Modulo. 148

F : p-2
[«1)(MODES] Selects MODES menu.

O [%)(MODES]
(*](MODES] Selects MODES Customization menu.

O [r*)(MODES])
Selects STAT MODL (statlstlcs model) 377

mol Mole, mass (1 mol).

U [«Q)UNTS) p-3

Mpc Megaparsec, length
(3.08567818585 x 102 m).

U ©NTS) p2

mph Miles per hour, speed(44704 m/s).

U [«IUNITS] &

762 Operation Index

Name, Key

or Label

Description
Type, Keys

Page |

MTH Selects MTH (math) menu.

o

Switches date display format.

O [wl(mmE]

442

Meters per second, speed (1 m/s)

U [«]ONITS] SFE

Newton, force (1 kg: m/s2)

U [«][UNITS] p.2 EiiFD

Returns number of rows in EDAT

C [FETATpS5 H

383

NEG Negate.

A

134

Takes algebraic or matrix from stack,

prompts for name, stores named algebraic
in EQ, or named matnx in ZDAT.

[©)FLOT] HE]

(2)(SOLVE] -
O [«JETAT)

257

368

NEWOB Decouples object from list or variable
name.

C [QMENORY] p.2

 NEXT Ends a definite-loop structure

C [Rg

 502

506
Operation Index 763

Name, Key Description Page
or Label Type, Keys

Displays but does not execute next one or 484
two objects in suspended program.

O [RG C
nmi Nautical mile, length (1852 m)

U [«]lUNITS) p.3
Cancels alarm repeat interval and returns 445
to TIME ALRM menu.

O [«w]ME]
NOT Logical or binary NOT

e 493

F - ; 210

NUM Returns character codeof first characterin 92
string.

C [prG)
[=NUM] Evaluates algebraic to number 127

C [e)l>NumM]
Rotateslist of equations in EQ.

. BULWR [HHEG 272
o . ” 309

NXT Selects next page of menu. 56

o

764 Operation Index

Name, Key Description Page
or Label Type, Keys

Selects PRG OBJ (program object) menu.

o
OBJ— 93

OoCT Sets octal base. 208

25

O [e](OFF]
OFF Turns calculator off. 540

C p3 =

OLDPRT Remaps HP 48 character set to match HP 603
82240A Infrared Printer.

C [«l[PRINT] p.2 OLDFR

Turns calculator on. 25

o

Operation Index 765

Name, Key

or Label

Description
Type, Keys

Page

OPENIO Opens serial port.

C [@Ji/0)p-2 OPENI
615

OR Logical or binary OR.

MTH] BAS 4

F {

210

493

ORDER Rearranges VAR menu in order specified in
list.

C [«)(MEMORY] ORDEFR

113

ORDER Puts selected equation at top of Equation
Catalog list.

((J[PLOT]) CATp.2 ORDER

[«)(SOLVE] CH .2 ORDER

O [»)[ALGEBRA] p.2 0OELEFE

Puts selected statistical data at top of
Statistics Catalog list

O [«J(STAT] CHT p2 ORCER

260

372

OVER Duplicates object in level 2 in level 1.

C K ow

79

0z Ounce, mass (.028349523135 kg).

U [«JNTS] HMASs @02
766 Operation index

Name, Key Description Page
or Label Type, Keys

ozfl US fluid ounce, volume
(2.95735295625 x 10~5 m?3).

U [«]UNITS] p3
ozt Troy ounce, mass (.031103475 kg).

U [«)UNTS] |
ozUK UK fluid ounce, volume

(2.8413075 x 107> m?)

U [«llNTS) p3 |
P Poise, dynamic viscosity (.1 kg/m-s)

U [«]UNITS] p3 ¥IE
Pa Pascal, pressure (1 kg/m-s%)

U [«]NITS] p.2 :
PARAMETRIC Selects PARAMETRIC plot type. 327

C ... PFIVFE B

PARITY Selects one of 5 possuble panty settings. 617

C [«¢ 1T
Selects MTH PARTS menu.

O [MTH) :

PATH Returns list contammg path to current 120 directory.

C [«)MEMORY] |

Operation Index 767

Name, Key Description Page
or Label Type, Keys

pc Parsec, length (308567818585 x 101 m).

U [«UNTS) LI
PDIM Changessize of PICT 325

[lpoIn Recallssize of PICTto stack. 319
. PLOTRp.3)

o [E]m p.3 [] FD
pdi Poundal, force(. 138254954376 kg-m/s?).

U [«UNITS] p.2 EORCE
PERM Permutations. 147

F EEROB(PEI
PGDIR Purges specified directory. 123

C [«)[MEMORY] p.3 FGLIR

ph Phot,illuminance (795.774715459 cd/m?)

U [@JUNTS] p.3 LI

768 Operation Index

Name, Key Description Page
or Label Type, Keys

PICK Copies objectin level n to level 1. 79

c
Copies objectin currentlevel to level 1. 7

o

PICT Returns PICTto level 1. 341

c :
PIXOFF Turns off specified pixel in PICT. 339

C p.2

PIXON Turns on specified pixel in PICT. 339
c p2 B

PIX? Tests whether specified pixel in PICT is on 339
or off.

C p.2

pk Peck, volume (.0088097675 m").

U [«wJUNTS] | %0
PKT 615 Sends KERMIT commands to a server.

C [«l0/Q)p.2

Operation Index 769

Name, Key

or Label

Description
Type, Keys

Page

PLOT Selects PLOT menu.

O [wJ(PLOT]
Selects PLOT PLOTR menu.

O [e)[PLOT]

Makes the selected entry the current
statistical matrix and displays the third
page of the STAT menu.

O [WJ[STAT) (CHT ‘FLOT

371

FLOTR Selects PLOT PLOTR menu.

[«)[PLOT) FLOTE
[(Q)PLOT) (CAT FLOTE

(](ALGEBRA] FLOTR

O [«)(SOLVE] CAT FLOTE

PMAX Sets upper-right plot coordinates.

C Must be typed in.

PMIN Sets lower-left plot coordinates.

C Must be typed in.

[POLAR] Switches rectangular and polar
coordinates.

O [])(POLAR]

158

POLAR Selects POLAR pilotty

C 'FE

pe.

E 327

770 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

POS Returns the position of substring in string
or object in list.

C p-3

93

Selects UNITS POWR (power) menu.

O [«JUNITS] p.2

PREDV Predicted value.

C Must be typed in.

PREDX Returns predicted value for independent
variable, given value of dependent variable.

C [«ETAT) p4 ER

376

PREDY Returns predicted value for dependent
variable, given value of independent
variable.

C [«IETAT) p4

377

Selects UNITS PRESS (pressure) menu.

O [x](UNITS] p.2

 («a)(PREV

(] ([PREV] Selects previous page of menu.

O (w)[PREV]
Selects first page of menu.

O []PREV] 56

56
Operation Index 771

Name, Key Description Page
or Label Type, Keys

Selects PRG (program) menu.

o
PRINT Selects PRINT menu.

O [%)(PRINT]
PRLCD Prints display. 603

C [«][PRINT] ¢
O Simultaneously press (ON] [MTH]

‘FROE Selects MATH PROB (probability) menu.

O MTH | -.
PROMPT Displays prompt string in status area and 521

halts program execution.

C RL pP-2 3

PRST Prints all objects on stack. 603

C [«wJ[PRINT]
PRSTC Prints all objects on stack in compact 603

format.

C [«)[PRNT] ER

772 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

PRVAR Prints name and contents of one or more

variables (including port names).

C [«J[FRINT]

603

PR1 Prints object in level 1.

(«J(PRINT]
C [2)[PRNT]

603

psi Pounds per square inch, pressure
(6894.75729317 kg/m-s?).

U [«Q]UNTS]p2 §

pt Pint, volume (.000473176473 m’).

U [«](UNTS) p2 .

BEEE Selects PLOT PTYPEmenu.

(«)[PLOT] |

L

p.2
o [E]mp2 E

PURGE Purges one or more specified variables.

C [wJPurGE]
114

 Purges one or more specified variables. If
only one untagged variable specified,
saves previous contents for recovery by

LASTARG.

O [w](PURGE] 114
Operation Index 773

Name, Key
or Label

Description
Type, Keys

Page

Purges selected equatlon

(+2)(SOLVE] ¥
()(PLOT] CA

O [](ALGEBRA] 2 F
Purges selected statistical matnx
0 [@ETAT) ‘AT

Purges selected alarm

(<) (TIME] '
O [=)(TME]

260

372

450

PUT 94

PUTI Replaceselementin array orI|st and
increments index.

C UBEYp4 FUTD

94

PVARS Returns list of current backup objects and
libraries within a port.

C [%J(MEMORY] p.2 |

647

PVIEW Displays P/CT with specified pixel at
upper-left corner of display.

C [PRG] DSFL

 342

774 Operation Index

Name, Key Description Page
or Label Type, Keys

PWRFIT Set curve-fitting model to Power. 377

C [(«J[STAT] p4 HOI
PX—C Converts pixel coordmates to user-unit 324

—-Q Converts numberto fractional equwalent 134

C w9
QUAD Finds solutions of first or second order 391

polynomial.

C [«J(ALGEBRA] GUAD
QUOTE Returns argument expression unevaluated.

F [«)(ALGEBRA] p.2
qt Quart, volume (000946352946 m).

—Qr Calculatesand compares quotients of 134
number and number/.

C [«](ALGEBRA] p.2 !
r Radian, plane angle (. 1591549343092)

U [«](UNTS] p.3 AHG
R Roentgen, radiation exposure (000258 A-s/kg).

U [H)[UNTS] p.3

Operation Index 775

 application.

F Must be typed in.

Name, Key Description Page
or Label Type, Keys

°R Degrees Rankine, temperature.

U [@ONTS) p.2 '
rad Rad, absorbed dose (01 m?/s?)

U [«@JUNTS] p3 |
RAD Sets Radians mode. 139

C [+)(MODES] p.3 | F
Switches Radians and Degrees mode. 30

O [«J[RAD]
Selects UNITS RAD (radlatlon) menu.

O [wJUNTS] p.3
RAND Returnsrandom number 147

RATIO Preflxform of / used by Equatloanter

776 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

RCEQ Returns equation in EQ to level 1.

(«)(SOLVE] [*) 5TEG

... PLOTR(2] DRAL
C [FLoT B

256

RCL Recalls object stored in specified variable
to stack.

C [=JRcL

110

RCL Inserts algebraic from level 1 into
EquationWriter equation.

O [e][Rcl)

246

RCLALARM Recalls specified alarm from system alarm
list.

C [«wJ[ME] ALRMp2 RCLAL

453

RCLF Returns binary integer representing states
of system flags.

C [>JMODES]p.2

518

RCLKEYS Returns list of current user-key
assignments.

C (PJMODES) (RCLK

220

 RCLMENU Returns menu number of current menu.

C [BJMODES] p2 “ROLIM: 535
Operation Index 777

Name, Key Description Page
or Label Type, Keys

RCLE Recalls current statistical matrlx in LDAT. 368

C «JETAT] (]
RCWS Recalls blnarymteger wordsize. 207

C [MTH] EH RCHE
rd Rod, Iength(50292100584 m).

U [«JUNTS] LEH
RDM Redimensions array. 360

C [MTH) HHTE ROHM

RDZ Setsrandom number seed. 147

RE Returnsreal part of complex number or 166
array.

F [MTH) .

RECN Waits for stack-specified data fromremote 615
source running Kermit software.

RECV Waits for sender-specified data from 614
remote source running Kermit software.

C [«Ji/Q) R

778 Operation Index

Name, Key Description Page
or Label Type, Keys

rem Rem, dose equivalent (.01 m?/s?).

U [«UNTS] p.3
REPEAT Begins REPEAT clause. 512

C
REPL Replaces portion of object with anotherlike

object.

95

343

Replaces portion of PICT with level-1 341
graphics object.

EHW p3 EE

. p3

O [«][GRAPH] p.3
Replaces specified subexpression with 247

algebraic from stack.

O [«][EQUATION] [«] 398

Operation Index 779

Name, Key

or Label

Description
Type, Keys

Page

RES

()

Sets spacing between plotted points.

... PBLOTR p.2

C [2)[PLOT] p.2
Recalls spacing to stack.

e p.2 [c*)

O [PLoT]p.2 ()

321

318

Resets plot parameters in PPAR in the
current directory to their default states and
erases and resizes PICT.

... PFEUTE p.2 FEESET

O [e]PLOT] p.2 R

323

RESTORE Replaces HOME directory with backup
copy.

C [«a][MEMORY] p.3

 648

780 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

REVIEW

Displays statistical data in XDAT.

O [«](STAT] («1](REVIEW]
Displays current equation and plot

:[«2][REVIEW]
GEJI!QI[EBIEMEII

(«2)[REVIEW]
(«2)[REVIEW]

o EBIHHHHI[EBIEMEII
Displays current equation.

O [«1](SOLVE] [«1](REVIEW]
(«2)(PLOT] [*](REVIEW]

Displays current equation and values of
SOLVR variables.

o (€] [REVIEW

Displays unit names corresponding to
selected menu.

O [«@JUNTS] ... («)[REVIEW]
Displays pending alarm.

O [«)(TIME] (x][REVIEW]
In other menus: Lists operation names and
types.

O [w][REVIEW]

368

294

303

256

290

265

191

439

112

Operation Index 781

 C [«l(SOoLvE] |

Name, Key Description Page
or Label Type, Keys

RL Rotatesleft by one bit. 211
c BHSEp.2 |

RLB Rotatesleft by one byte. 211

C p2 |
RND Rounds fractional part of number or name. 148

F p.4

RNRM Calculates row norm of array. 360

C p.2

ROLL Moves object in level (n + 1) to level 1. 79
c -

Rolls object in current level to level 1. 7

o -
ROLLD Moves objectin level 2 to level n. 79

c
Moves objectin level 1 to current level. 71

o

ROOT Solves for unknown variable in equation. 256

782 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

Moves graphics cursorto intersection of
function plot and x-axis, displays value of
root, returns value to stack.

O [«)(GRAPH]

308

Moves ob]ectinIevel 3to Ievel1.

C [rg)

79

Inserts row of zeros at current row.

O [P)MATRIX] p.2

351

Deletes current row.

O [2]MATRIX] p.2

351

Selects TIME ALRM RPT (alarm repeat)
menu.

O [QJTME] ‘ALRM

RR Rotates right by one blt

C [MTH)

211

RRB Rotates rlghtby one byte

C [MTH p.2

211

RSD Calculates correction to solution of system
of equations.

C [MTH]

362

 Activates RULES transformatlon menu for

specified object.
O [G)[EQUATION) (€ RULES

 398

Operation Index 783

F p.2

Name, Key Description Page
or Label Type, Keys

R—B Real-to-binary conversion. 210

C _BHSE p.2
R—C Real-to-complex conversion. 95

C pg-2
R—D Radians-to-degrees conversion. 142

Selects Polar/Cylindrical mode.

MTH] ¥E

O [w] [MODES] p.3

171

171

 s Second,time (1 s).

U [«q][ONITS

S Siemens, electric conductance

(1 A%83/kg-m?).

U [«][UNITS] p.2

784 Operation Index

Name, Key Description Page
or Label Type, Keys

SAME Tests two objects for equality. 492

c
sb Stilb, luminance (10000 cd/m?)

U [«]UNITS] p3 ¢
SBRK Sends serial break. 633

C [«i/Q)p3
SCALE Sets scale of PLOT axes. 295

c E]m p2 8
Recalls scale to stack. 294

LUTRp2 [&

o [E]m p-2] .
SCATRPLOT Draws scatter plot of statistical data in 379

LDAT.

C [«][STAT] p.3 SCHIR

SCATTER Selects SCATTER plot type 328

C

Operation Index 785

Name, Key Description Page
or Label Type, Keys

SCI Selects Scientific display mode. 58

C [+)[MODES] =1

SCLE Autoscales data in £DAT for scatter plot.

C Must be typed in.

SCONJ Conjugates contents of variable. 116
C [)(MEMORY] p.2 siiH

SDEV Calculates standard deviation. 374

C [«JETAT) p2 =ZDEYW

CSED Sets alarm repeat interval to n seconds. 445

O [«)(TIME] {ALFM EFT =EC

Increments current time by 1 second. 443

O [«)(TIME] ALJET SECH

SECLE Decrements current time by 1 second. 443

O [«QJ(TIME] ALJET SEC-

SEND Sends contents of variable to another 614
device.

C WI/O) =EHD

SERVER Puts HP 48 into Kermit Server mode. 614

(«]I/0) =EEWY

C [(=0/9)
786 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Selects TIME SET menu.

O [«JME] 8ET

Sets alarm.

O [wJmmE] ¢

445

Selects /0O SETUP menu.

Oi/:

SF Sets specified flag.

[PRG) 3
C [(J(MODES] p.2

516

SHOW Reconstructs expression to resolve implicit

variable name.

C [«J[ALGEBRA] !

394

SIGN Returns sign of number.

F FARETS

149

SIN Sine.

A [N
140

 SINH Hyperbolic sine.

A [MTH]

 137

Operation Index 787

[«a)(EDIT

o

Name, Key Description Page
or Label Type, Keys

SINV Replaces contents of variable with its 116
inverse.

C [»)[MEMORY] p.2 !

SIZE Finds dimensions oflist, array, string,
algebraic object, or graphlcsob]ect

95

342

68

Moves cursor right to next logical break. 68

SL Shifts left by one bit.

C [MTH] EASEp3 &L 211

788 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

SLB Shifts left by onebyte
C TH E

211

Calculates and displays slope of function at
cursor position, returns slope to stack.

0 . BFCH SLOPE

308

slug Slug,mass (14.5939029372 kg)

U QTS

SNEG Negates contents of variable.

C [J[MEMORY] p.2

116

[SOLVE] Selects SOLVE menu.

O [w)(SOLVE]

Selects SOLVR menu.

(«2)(SOLVE] :
[(«2)(SOLVE]
(](SOLVE]
[HFeT) SOLYR

O [>)[ALGEBRA] EOLYE

Types a blank space in command line.

O [seC]
 Selects UNITS SPEEDmenu.

O [H)UNTS) SPEED

Operation Index 789

Name, Key
or Label

Description
Type, Keys

Page

sQ Returns square of level-1 object.

A EF)
134

SR Shifts right by one bit.

c p.3
211

Sr Steradian, solid angle
(7.95774715459 x 1072).

U [«]UNITS] p.3 AHGL

SRB Shifts right by one byte.

C _BRASEp3

211

SRECV Reads specified number of characters from
1/0O port.

C [Il/O)p3 &R

633

Single-steps through suspended program.

o

484

Single-steps through suspended program
and its subroutines.

486

 o [CIRL88

st Stere, volume (1 m°).

St Stokes, kinematic viscosity (.0001 m?/s)

U [$JUNITS] p3

790 Operation Index

Name, Key Description Page
or Label Type, Keys

START Begins definite loop. 502

C & e |
Types START NEXT. 502

o [«
Types START STEP. 504

o BRCH[P

(«a)(STAT Selects STAT (statistics) menu.

O [«I[ETAT)
(>])(STAT Selects page 2 of STAT menu.

O [e][sTAT)
STD Selects Standard display mode. 58

C [«a](MODES]
STEP Ends definite loop. 504

C BR 508

Operation Index 791

Name, Key

or Label

Description
Type, Keys

Page

STEQ Stores level 1 equation in EQ.

(«)(PLOT] STEG
... BLOTR (&
()(PLOT] [«)

C [(«)(SOLVE] |

257

Sets serial transmit/receive timeout.

C [«@J/O)p.3 STINE

633

Selects PRG STK (program stack) menu.

Switches Last Stack recovery on and off.

O [«)(MODES]p.2 |

221

 Selects Interactive Stack.

... BB

[(«l(EDIT]
[)visiT) |

O [][MATRIX] p.

 70

351

792 Operation Index

Name, Key Description Page
or Label Type, Keys

Copies selected equation to level 1. 260

p.2

o Elm p.2
Copies selected matrix to level 1. 371

O [«JETAT) |
Copies selected alarm to eve 450

(«)(ME]
O [=)(mME]
Copies selected matrix elementto level 1. 351

O [P]MATRIX] p.2 -
STO Stores object in variable. 107

Cc
Stores object in variable and saves 107
previous contents of variable for recovery
by LASTARG.

o
Returns EquationWriter equation or PICTto 229
stack.

o 303

STOALARM Stores level 1 alarm in system alarm list. 453

C [w)ME] p.2
STOF Sets state of system and user flags. 518

C [J(MODES] p.2
STOKEYS 217 Makes multiple user-key aSS|gnments

C [(](MODES]

Operation Index 793

Name, Key Description Page
or Label Type, Keys

STO+ Adds specified number or array to 115
contents of specified variable.

C [J(MEMORY] ST
STO- Subtracts specified number or array from 116

contents of specified variable.

C [][MEMORY]
STO» Multiplies contents of specified variableby 116

specified number.

C (])[MEMORY]
STO/ Divides contents of specified variable by 116

specified number.

C [e)MEMORY] 3510~
STOZ Stores current statistics matrix in ©DAT. 368

C [«IETAT) s10Z
STR— Converts string to component objects.

C Must be typed in.

—STR Converts object into string. 95

C
STWS Sets binary integer wordsize. 207

C [MTH]
SuB Extracts specufled portion oflist or string,

96

343

794 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Returns specufled portlonof PICTto stack.

 o E]WN

341

Returns specified subexpressnon to stack.

O [«)EQUATION] (¢

398

Sievert, dose equivalent (.01 m?/s?)

U ([«)[ONTS) p.3 |RAG _

Exchanges objects in levels 1 and 2.

C [w[EwAP]
63

Switches Symbolic and Numerical Results
mode.

0 [FIMODES) -st

144

 SYSEVAL Evaluates system object. Use only as
specified by HP applications.

C Must be typed in.

Operation Index 795

Name, Key

or Label

Description
Type, Keys

Page

t Metric ton, mass (1000 kg).

U [«JUNITS] p.2
 T

Tesla, magnetic flux (1 kg/As?).

U [«]UNITS] p2 ELECp2 |

Move term left.

O [«¥9)(EQUATION] (@] F

Executes

subexpression.

O [«)([EQUATION] (4] §
]

402

410

Move term right.

O [«][EQUATION] («] RL
Executes -until no change in
subexpression.

O [«1)[EQUATION] (4] F
)

402

410

%T Returns percentfraction that level-1 is of
level-2.

F ' p-2

138

—TAG Combines objectsin levels 1 and 2 to
create tagged object.

C [FRG

96

TAN Tangent.A 140

796 Operation Index

Name, Key Description Page
or Label Type, Keys

TANH Hyperbolic tangent. 137
A (MTH “HYP: -

TAYLR Calculates Taylor’s polynomlal 426

C [«J(ALGEBRA] T :
tbsp Tablespoon, volume

(1.47867647813 x 10S md).

U [«][ONITS)
Selects UNITS TEMP (temperature) menu.

O [«]J[UNITS] p.2 |TEHME

“““TEST Selects PRG TEST(program test) menu.

O [PRG] itE=T

TEXT Displays stack dlsplay 344

C [PRG I }

THEN Begins THEN clause 494
C -BRPH.........p2

therm EEC therm, energy (105506000 kg-m?/s?)

U [«)uNTS)p2 | p2 |
TICKS Returns system time as binary integerin 456

units of clock ticks.

C [w)(ME] p.2

Operation Index 797

Name, Key

or Label

Description
Type, Keys

Page

TIME Returns current time as a number.

C [«J[TMME] p.2

456

[«1][TIME

() [TIME

Selects TIME menu.

O [«)(ME]
Selects Alarm Catalog.

O [=)(vE]
449

Selects UNITS TIME menu.

O [wJ[UNITS]

—TIME Sets system time.

C [wlme]

442

Sets alarm time

O [w)ME]

445

 TLINE Switches pixels on line defined by
coordinates in levels 1 and 2.

C [PRG)

 339

798 Operation Index

Name, Key Description Page
or Label Type, Keys

TLIHE Switches pixels on and off on line between 337
mark andcursor.

TMENU Displays list-defined menu but does not 539
change contents of CST.

C [»)(MODES] p.2 iTMEHN

ton Short ton, mass (907.18474 kg).
U [S]mep2

tonUK Long (UK) ton, mass (1016.0469088kg)

U [«w]NITS) !

torr Torr (mmHg), pressure
(133.322368421 kg/ms?).

U [«]ONITS] p.2 FRESE TORE

TOT Sums each column of matrix in £DAT. 374

C [W)STATIp2 TO
TRANSIO Selects one of three charactertranslation 618

settings.

C [«li/Q ¢

Operation Index 799

Name, Key
or Label

Description
Type, Keys

Page

Expands trigonometric and hyperbolic
functions of sums and differences.

O [«][EQUATION] (¢] R

409

TRN Transposes matrix.

C IR
360

TRNC Truncates (rounds down) number in level 2
as specified in level 1.
F (T P D4

149

TRUTH Selects TRUTHplot type

C

327

tsp Teaspoon volume
(4.92892159375 x 10~m3)

U [«]UNTS]

TSTR Converts date and time in number form to

string form.

C [«w)mME]p2

455

TVARS Returns variables contalmng specified
object type.

C [«)(MEMORY] p.2 1

98

TYPE Returns typenumber of argument object.

97

 Unified atomic mass (166057 x 10727 kg).

U [«]UNITS] (HMASE

800 Operation Index

Name, Key Description Page
or Label Type, Keys

UBASE Converts unit object to Sl base units. 196

F [](UNITS] UBASE
UFACT Factors specified compound unit. 199

C [=uNiTs) U
—UNIT Combines objects in levels 1 and 2 to 96

create unit object.

0B
C [JUNITS] #UHT

([« Selects UNITS Catalog menu.

O [«](UNITS]
[(>]([UNITS] Selects UNITS Command menu.

O [>]UNITS]
UNTIL Begins UNTIL clause. 510

UPDIR Makes parent directory the current 122
directory.

C [«llp)
Turns User mode on and off. 216

O [«l[UsR]
UTPC Returns probability that chi-square random 384 variable is greater than x.

C

Operation Index 801

Name, Key
or Label

Description
Type, Keys

Page

UTPF Returns probability that Snedecor’s F
random variable is greater than x.

C FROE p.2 UTFF

384

UTPN Returns probability that normal random
variable is greater than x.

C PROE p2 UTFH

384

UTPT Returns probability that Student’s t random
variable is greater than x.

C FREOE p2 UTFT

384

UVAL Returns scalar of specified unit object.

F [>]UNITS] WAL

206

Volt, electrical potential (1 kg-m?/A-s°).

U [«]UNITS]) p.2 ‘ELED %

VAR Calculates variance ofstatistical data

columns in XDAT.

C Must be typed in.

VAR Selects VAR (variables) menu.

o

112

Makes the selected entry the current
statistical matrix and displays the second

page of the STAT menu.

O [«V)[STAT] CHT I1=VdE

371

Makes the selected entry the current
statistical matrix and displays the fourth
page of the STAT menu.

O [EJETAT) CHT Z=HR

371

VARS Returns list of variables in current directory.

C [@MEMORY) VARS 113

802 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Switches vector and array modes.

O [P)MATRIX]

351

Selects MTH VECTR (math vector) menu.

O [MTH) ¥ECTR

)VIEH

Copieslevel 1 object into appropriate
environment for viewing.

0 M™
Copies object in current level into
appropriate environment for viewing.

O ... *t2TE MIEW

Displays selected equation.

O ... ©CHT MIEW

Displaysselected matrix.

O [«w)[STAT] CAT MIEM
Displays selected alarm.

O [«J(TIME] i AT WIEW

Copies object stored in variable in the
current level into appropriate
environment for viewing.

0o [P} VIEN

67

73

260

372

450

71

Selects UNITS VISC (viscosity) menu.

O [E]m p3 E i l_; i

 VISIT If argument is name, copies contents of
associated variable into command line for
editing. If argumentis a stack level
number, copies objectin that level into
command line for editing.

O [(2Jvis] 66
Operation Index 803

Name, Key Description Page
or Label Type, Keys

HOE Selects UNITS VOL (volume) menu.

O [«wJUNTS) @voL

VTYPE Returns type number of object stored in 97
local or global name.

C p2 ¥ITFE

—V2 Combines two real numbers into a 2-D 167
vector or complex number
C [MTH) YECTR p.2 =3

—V3 Combines three real numbers into 3-D 183
vector.

c MECTR p.2 #¥3
V— Separates 2- or 3-element vector according 167

to current angle mode.

C [MTH] ¥ECTRp2
W Watt, power (1 kg-m?/s’)

(«)[UNITS] p.2 FOWE

U [«)UNITS]p.2 ELEC

*W Adjusts horizontal plot scale. 319
C p.3...... . .;

WAIT Halts program executionfor specified 534

number of seconds or untll key pressed.

C [PRG) CTRELp.2 WA

Wb Weber, magnetic flux (1k mz/As?)

U [«)[ONITS] p.2

804 Operation Index

Name, Key Description Page
or Label Type, Keys

Sets alarm repeat interval ton weeks. 445

O [«)(TME]
WHILE Begins indefinite Ioo 512

C [PRG)
TypesWHILE REPEATEND 512

Increases column width and decrements 351
number of columns.

O [?)MATRIX]
Decreases column width and increments 351
number of columns

O [?JMATRIX] €WI

Selects x-axis zoom. 305

o

X Returns sum of data in independent 383
column in XDAT.

C [«][STAT] p.5
X2 Returns sum of squares of data in 383

independent column in £DAT.

C [«I[ETAT] p.5
Selects x-axis zoom with autoscallng 305

O

Operation Index 805

... PLOTR (B
O [PF)PLOT) ()&Rt

Name, Key Description Page
or Label Type, Keys

XCOL Specifies independent-variable column in 376
matrix in XDAT.

C [«J(STAT]) p.3 HCOL

=] Recalls independent-variable column 376
numberto stack.

O [«JETAT) p3 ()HEOL
XMIT Without Kermit protocol, performs serial 632

send of string.

C «WJi/Q) p3 #HIT

XOR Logical or binary exclusive OR.

EBHASE p4 2OR 211

F IEBT | AC 493

XPON Returns exponent of number. 149

F FARTS p.3 HEOH

XRNG Specifies x-axis display range. 295

... PLOIR HEHG

C [)PLOT] HRHG
()%FHE Recalls x-axis display range to stack. 293

806 Operation index

Name, Key
or Label

Description
Type, Keys

Page

XROOT Returns level 1 root of the real number in

level 2.

A (@]

134

Selects x- and y-axis zoom.

O ... Zoo wy

305

Selects Rectangular mode.

i couraesen

O [«] [MODES] p.3

bl

171

IXxY Returns sum of products of data in

independent and dependent columns in
EDAT.

C [«ETATIpS =

383

Selects y-axis zoom.

O ...zZogm . %

305

Y Returns sum of data in dependent column
in LDAT.

C ETAT)pS5 @2%

383

 xYr2 Returns sum of squares of data in
dependent column in XDAT.

C [«ETAT)p5 Zie
i

 383

Operation Index 807

Name, Key

or Label
Description
Type, Keys

Page

YCOL

Selects indicated column of £DAT as
dependent-variable column for two-
variable statistics.

C [wJ[ETAT p3 ¥COL
Recalls dependent-variable column number
to stack.

0 @ETATp3B

376

376

International yard, length (9144 m).

yd

U [«JUNITS] LEHG @%0

yd~2 Square yard, area(83612736 m2)

U [«)uNTs] .
yd™3 Cubic yard, volume(764554857984 m’).

U [«]uNTS]
yr Year, time (31556925.9747 s).

U [«QJUNTS)

808 Operation Index

Name, Key Description Page
or Label Type, Keys

YRNG Specifies y-axis display range. 293

... PLOIR

C [eJPLoT]
Recalls y-axis display range to stack. 293

O [e)(PLOT] ()

Zooms in to box whose opposite corners 306
are defined by mark and cursor.

306

0 (S(ERARH) &)

Operation index

 A

Name, Key Description Page

or Label Type, Keys

Selects GRAPHICS ZOOM menu. 304

+ Adds two objects 90

A [
+/- If cursor is on a number, changes sign of 47

mantissa or exponent of that number.
Otherwise, acts as NEG key.

c
Switches cursor style between super- 302
imposing and mvertlng Cross.

O [EICEEPH p3 “#r=
e Add and subtract 1. 402

O [«](EQUATION] [« RULES
- Subtracts two objects. 134

810 Operation Index

Name, Key Description Page
or Label Type, Keys

Double negate and distribute. 407

O [«1][EQUATION] [«] Ri
* Multiplies two objects. 134

A M
Multiply by 1. 401

O [«][EQUATION] («]
/ Divides two objects. 134

A
Divide by 1. 401

O [%][EQUATION] [«] Kl
- Raises number to specified power. 134

A [
Raise to power1. 401

O [w][EQUATION] («]
< “Less-than” comparison. 491

£

Operation Index 811

F k«{

Name, Key Description Page
or Label Type, Keys

< “Less-than-or-equal” com 491
e 9=

F el @
> “Greater-than” comparison. 491

F W)@
> “Greater-than-or-equal” comparison. 491

TESTp2

FB
= “Equals” function. 129

A @E
== “Equality” comparison 492

812 Operation Index

Name, Key

or Label

Description
Type, Keys

Page

F “Not-equal” comparison

fTESTp.2 |
F«=l0

492

Turns alpha-entry mode on and off.

o [
52

~
~

| Switches implicit parentheses on and off.

O [«][EQUATION] [\][{Y]

237

[Returns equation to stack as string.

O [«)EQUATION] (]
230

Degree, plane angle
(2.77777777778 x 1073).

U [«][UNITS] p.3 |AHGL

 Factorial.

F [[«]

 147

Operation Index 813

Name, Key
or Label

Description
Type, Keys

Page

J Integral.

A [l
428

Derivative.

A 2@
419

Ohm,electric resistance (1 kg-m?/A%s?).

U [«JUNITS] p.2 ELEC

Returns level 2 percent of level 1.

A [MTH] FRETZ p2 :

138

Symbolic constant = (3. 14159265359)

F [«

144

Summation.

F 2103
423

Adds data point to matrix in XDAT.

C [«

368

Subtracts data point from matrix in ZDAT. 368

Returns square root of level-1 object.

A
134

 Appends local name, or variable of
integration, and its value to evaluated
expression.

F [«l(ALGEBRA] p.2 || 416

814 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

Double-invert and distribute.

O [@EQUATON @ RuL

407

Switches between 12-hour and 24-hour

display formats.

O [« MME]

442

Parenthesize neighbors.

O [«](EQUATION] (4]

403

Expand-subexpression-left.

O [%)[EQUATION] («] RULES
Executes until no change in
subexpression.

O [«a)[EQUATION] [«] RULES
()

404

410

Distribute prefix function.

O [«)[EQUATION] (9

405

Expand-subexpression-right.

O [«a)[EQUATION] [«]
Executes until no change in
subexpres

O [%]([EQUATION] (€] RUL
a3

404

410

 Commute arguments.

O [«)[EQUATION] [d] R

 404

Operation Index 815

 one object.

In catalogs: Moves pointer up one entry.

O (a]

Name, Key Description Page
or Label Type, Keys

— Creates local variables. 473

C [
[« Left shift key. 52

0 [
(] Right shift key. 52

O []
(] In command line, deletes characterto left 47

of cursor.

O [«
Deletes contents of current stack level. 72

(4] In multi-line command line: Moves cursor 75

up oneline.

In Interactive Stack: Moves pointer up one 72
level.

In Graphics environment: Moves cursor up 303
one pixel.

In scrolling mode: Moves window up one 229
pixel.

In MatrixWriter application: Moves cell 350
CUrsor up one row.

In EquationWriter application: Starts 229
numerator.

In Selection environment: Moves cursor up 399

816 Operation Index

Name, Key
or Label

Description
Type, Keys

Page

()(a) In multi-line command line: Moves cursor

to top line.

In Interactive Stack: Moves pointer to
highest numbered stack level.

In Graphics environment: Moves cursor to
top edge of PICT.

In MatrixWriter application: Moves cell
cursorto top element of current column.

In Selection environment: Moves cursor to

topmost object.

In catalogs: Moves pointer to top of list.

O [=ia)

75

72

303

350

399

 («J@a) In catalogs: Moves pointer up one page.

In Interactive Stack: Moves pointer up 4
levels.

O [«ja) 72

Operation Index 817

 bottommost object.

In catalogs: Moves pointer to end of list.

0 MV

Name, Key Description Page
or Label Type, Keys

¥ In multiline command line: Moves cursor 75
down one line.

In Interactive Stack: Moves pointer down 72
one level.

In Graphics environment: Moves cursor 303
down one pixel.

In scrolling mode: Moves window down 229
one pixel.

In MatrixWriter application: Moves cell 350
cursor down one row.

In EquationWriter application: Ends 229
subexpression.

In Selection environment: Moves cursor 399
down one object.

In catalogs: Moves pointer down one
entry.

o [
(] (V) In multidline command line: Moves cursor 75

to bottom line.

In Interactive Stack: Moves pointer to 72

level 1.

In Graphics environment: Moves cursorto 303
bottom edge of PICT.

In MatrixWriter application: Moves cell 350
cursorto last element of current column.

In EquationWriter application: Ends all 229
subexpressions.

In Selection environment: Moves cursorto 399

818 Operation Index

Name, Key Description Page
or Label Type, Keys

VA4 In catalogs: Moves pointer down page.

In Interactive Stack: Moves pointerdown4 72
levels.

0 B
(« In command line: Moves cursor one 75

characterleft.

In Graphics environment: Moves cursor 303
one pixelleft.

In scrolling mode: Moves window left one 229
pixel.

In MatrixWriter application: Moves cell 350
cursor one column left.

In EquationWriter application: Activates 398
Selection environment.

In Selection environment: Moves cursor 399
one object left.

0O
(«l(w In EquationWriter application and Graphics 229

environments: Invokes scrolling mode.

((=J([GRAPH)) O [«a](«] ((+a](GRAPH])) 303

Operation Index 819

 one objectright.

o [

Name, Key Description Page

or Label Type, Keys

3| In command line: Moves cursor to start of 75
current line.

In Graphics environment: Moves cursorto 303
left edge of PICT.

In MatrixWriter application: Moves cell 350
cursor to first element of current row.

In Selection environment: Moves cursorto 399
leftmost object.

0 [P«
] In command line: Moves cursor one 75

character right.

In Graphics environment: Moves cursor 303
one pixelright.

In scrolling mode: Moves window right one 229
pixel.

In MatrixWriter application: Moves cell 350
cursor one column right.

In EquationWriter application: Ends 229
subexpression.

In Selection environment: Moves cursor 399

820 Operation Index

Name, Key Description Page

or Label Type, Keys

(1] In command line: Moves cursor to end of 75
current line.

In Graphics environment: Moves cursorto 303
right edge of PICT.

In MatrixWriter application: Moves cell 350
cursorto last element of current row.

In EquationWriter application: Ends all 229
subexpressions.

In Selection environment: Moves cursorto 399
rightmost object.

O (=l

Operation Index 821

Index

A
aborting with the attention key
command line, 54

environments, 54

programs, 54
absolute value

of a matrix, 360

of a number, 148

of complex numbers, 166
of vectors, 177

accented characters, generating,

53
accuracy

in solving systems of equations,
362

of fraction conversion, 136
of m, 140

adding
a stack value to a variable, 115

in the EquationWriter
application, 231

numbers, 134

ADIJST menu, 443

Alarm Catalog, 449
operations, 450

alarms

acknowledging, 446
appointment, 445
commands, 450

control, 448

execution action, 444

lost after recovering memory,
102

past due, 447
recovery from short-interval

repeating alarms, 448
repeating, 444, 445
rescheduling, 447
reviewing and editing, 449
saving, 447
setting, 443
turning the beeper off, 447
unacknowledged, 447
used in programs, 453

alert annunciator, 48

algebra, 386-417
adding fractions, 409
building and moving

parentheses, 403

collecting terms, 395, 402

commutation, association, and

distribution, 404

comparing methodsfor isolating
a variable, 393

expanding products and powers,
396

expanding trigonometric
functions, 409

general and principal solutions,
393

Index 823

isolating a variable, 389
limitations, 390

moving terms, 402
multiple execution of Rules

transformations, 410
rearrangement of exponentials,

408
rearranging terms, 394
Rules transformations, 397

Selection environment, 398

showing hidden variables, 394
solving equations for a variable,

386
solving quadratic equations, 390
symbolic solutions, 388
universal transformations, 400

user-defined transformation,
414

ALGEBRA menu, 389, 395

Algebraic-entry mode, 76
annunciator, 48, 84

entering unit objects, 189, 191
Algebraic/Program-entry mode,

77
algebraics, 125-130

are mathematical expressions,
85

collecting terms, 571
compared to programs, 125

differentiation, 419

disassembling, 90
evaluation, 125
evaluation of terms, 128

mode for keying in, 76
mode for keying into programs,

77
nested parenthesesin, 128
object type number, 97
parentheses are highest

precedence in, 128
precedence of operators, 128
rearranging terms, 397

824 Index

replacing in the EquationWriter
application, 248

short for algebraic objects, 85
simplification process, 128
stepwise evaluation, 126
using comparison functions in,

492

using complex numbers, 164
using complex numbers in, 161
using logical functions in, 493
using unit objects in, 191
viewing in the EquationWriter

application, 241
alpha key

activates alpha keyboard, 25
press twice for alpha lock, 53

alpha keyboard, 52
alpha keyboard annunciator, 48
alpha left-shift keyboard, 50
alpha lock, 53, 222
alpha right-shift keyboard, 50
Alpha-entry mode, 52, 53, 222

ALRM menu, 444

ALRMDATreserved variable,

contains data for an alarm,
108

am/pm time format, 442
analytic functions, are a subset of

functions, 42
and

with binary integers, 210
with tests, 493

angle, in complex numbers, 157
angle conversion functions, 142
angle modes, 139, 170, 350

selecting, 139
angle units, 198
animation

of custom graphical image, 597
of Taylor’s polynomials, 588

annunciators
are displayed in status area, 48
completelist of, 48
share “territory” with messages,

48
answers to common questions, 656
antiderivative, 428
application cards, 651
appointment alarms

acknowledging, 446
unacknowledged, 447

approximation
of symbolic constants, 144
of the definite integral, 432

arc cosine, 140
arc hyperbolic cosine, 137
arc hyperbolic sine, 137
arc hyperbolic tangent, 137
arc sine, 140
arc tangent, 140

archiving memory, 624, 648
area, beneath a plotted curve, 308

arguments, on the stack, 61
arithmetic

with a matrix and a vector, 356
with complex arrays, 357

with complex numbers, 156
with dates, 454

with time, 456

with unit objects, 200
with variables, 115
with vectors, 353

arithmetic and general math
functions, 134-135

arrays, 83, 346 -364

assembling, 90
commands for, 360

complex, 357
dimension (size), 90
entering using the command

line, 350
printing, 604

ASCII Transmission mode, 617,
629

assembling
complex numbers, 160, 166
unit objects, 206
vectors, 173, 183

assigning user keys, 217
association, algebra, 404

attention key, 25
halts currentactivity, 54

Automatic Alpha Lock mode, 222
automatic off, happens after 10

minutes, 25

autoscaling a plot, 295
available memory, number of

bytes of unused user
memory, 101

axes
labeling, 320
specifying coordinates of

intersection, 320

backing up directories, 645
backspace editing

in EquationWriter application,
241

in the command line, 75

backup objects, 645, 646
in custom menus, 213
object type number, 97
store objects in plug-in memory,

89
bar over menu label, indicates a

directory, 118
bar plot, 379

from Plot application, 336
from Statistics application, 379

base
binary integers, 207
selecting, 208

base 10 antilogarithm, 137

Index 825

base 10 logarithm, 137
base e (natural) antilogarithm, 137
base e (natural) logarithm, 137
base marker, 207

entering, 208
BASE menu, 82, 208, 210

batteries, 25, 660

changing, 661
for plug-in RAM,638, 661

for the HP 48, 661

baud rate
during printing, 610
setting, 617

beeper, turning off for alarm, 447
beeping, from a program, 522
Bessel functions, 585

bestfit line, 376

binary arithmetic, 207211
binary base marker, 82
binary integers, 82, 207

base, 207

bits displayed, 208
calculations, 209

displaying, 208, 554
entering, 208
internal representation, 208
logic commands for, 210
object type number, 97
wordsize, 207

binary to real conversion, 210
Binary Transmission mode, 617,

629
Black Gold Ltd, 27

blue keys, 25, 50

boolean logic commands, 210
box, drawing, 337
brackets, used to enter vectors,

172
BRCH menu, 494, 501

bubble sort, 561

buffer length, serial I/O, 632
buffered keystrokes, 48
buffered printing, 608

826 Index

built-in commands, 90
object type number, 97
use 2.5 bytes, 101

built-in constants, 144
built-in functions, 90

compared to user-defined
functions, 150

object type number, 97
built-in menu, displaying, 534
built-in unit objects, 193
busy annunciator, 48
bytes command, returns

checksum, 101

C
cable connection, PC to HP 48,

621

calculus, 418 -436

complete differentiation, 421
differentiation, 419

differentiation of user-defined
functions, 422

how the HP 48 does symbolic
integration, 429

numerical integration, 432

summations, 423

symbolic integration, 428
Taylor’s polynomial

approximation, 431
capital letters, 50

carriage-return, dumping the print
buffer, 603

CASE...END program structure,

497
Catalogs
Alarm, 449

Equation, 253, 258

Review, 112
Statistics, 370

centering a plot, 295
chain calculations, using the stack,

62

changing sign
of a number, 47, 134

changing the contents of a
variable, 111

character codes, 694-696
charactersets

printing the HP 48 character
set, 607

printing with the Infrared
Printer, 609

remapping the infrared printer,
603

translating during input/output,
626

characters
converting numbers to

characters, 90
determining their numeric

value, 90

entering special characters, 50
generating accents, 53

checksum, 547

used to verify objects, 101
with input/output, 617

chi-squared test, 384
circle, drawing, 337
clearing

alarms, 450

all variables in a directory, 115
flags, 222, 516
last error, 542

memory (press three keys), 101
messages from the display, 48
objects when out of memory,

103
the stack, 64

user key assignments, 219
using the attention key, 25

clock
adjusting, 443
commands, 441

recording execution time, 552
closing serial port, 614

collecting terms, 395
algebra, 402

column norm, of a matrix, 359
combinations, calculating, 147

comma, as fraction mark, 58
command arguments on the stack,

61

command line, 75-77

cancelling with the attention
key, 54

editing in the EquationWriter
application, 242

entering and editing text, 46, 75

entering arrays, 349
keying in numbers, 47
middle section of the display, 45
recovering previous command

lines, 77

scrolls after 21 characters, 46

command-line string, building, 528
commands

are a subset of operations, 42
as objects, 90
defined, 42
of one argument, 61
of two arguments, 62

common (base 10) antilogarithm,
137

common (base 10) logarithm, 137
common variables, 105
commutation, algebra, 404

compact format, of printed output,
604

comparison functions, 491
in algebraics, 492

complement, of a binary integer,
210

complex arrays
arithmetic with, 357

commands for, 357

object type number, 97

Index 827

complex numbers, 81, 156 -168
allowed in algebraics, 161
arithmetic with, 156
arrays of, 357
as the result of real-number

operations, 163
assembling, 160, 166
changing angular modes, 157
commands, 166

compared to real numbers, 161
compared to vectors, 166, 167,

184
conjugating, 166
converting to real, 166
disassembling, 90, 160, 166
display form, 158
entering, 158
i (the imaginary number), 165
in expressions, 164
internal representation, 158
object type number, 97
printing, 604

complex to real, disassembling, 90
conditionalstructures

in programs, 494, 499
CONIC plot type, 327
conic plots, 329
conjugating

complex arrays, 357
complex numbers, 166
contents of a variable, 115

connected plotting, 299
constant matrix, calculating, 359
constants, symbolic, 144
consumer price index, 364
continuing program execution, 483

after error, 541

continuous memory, not affected

by / [OFF), 25
contrast, adjusting, 25
control alarms, setting, 448
control codes, printing, 607

convergence, testing a series, 424

828 Index

conversion, temperature, 197
converting

binary to real, 210
complex array to realarray, 357

complex to real, 90, 166
compound unit to SI base units,

196
date to number, 454

dateto string, 454
degreesto radians, 142
HMS to number, 456

number to date, 454

number to HMS, 456

numbers to characters, 90
objectsto a string, 554
objectsto strings, 90
pixel coordinates to user-unit

coordinates, 324

radians to degrees, 142
real array to complex array, 357
real numbers to fractions, 136

real to binary, 210
real to complex, 90, 166

unit objects, 193, 194

units, 188, 195

coordinate mode, changing, 171
coordinate pairs, can be

represented by complex
numbers, 81

coordinate systemsfor plots, 323
correcting typing mistakes, 47
correlation, 377

cosine, 140

cotangent, creating a user-defined
function for, 151

counted strings, are counted
sequences of characters, 86

covariance, 375, 376

cross product, 176, 353
CST menu, 213

unit-object conversion in, 195

CST reserved variable
contains data for custom menus,

108, 213
CTRL menu, 483

current directory, 119
current directory path,is displayed

in status area, 48

current path, 119
cursor keys, 27
custom menus

conversion of units, 195
creating, 213
in programs, 535
menu labels, 213

shifted actions, 215

Customer Support, 656
customizing the calculator, 212-

223
modifying the shift keys, 215
setting modes, 220
user key assignments, 216
using system flags, 222

Cylindrical mode, 170
annunciator, 170

D
darker contrast, 25
data output, 531

labeling with string commands,
532

dates
arithmetic with, 454

changing format, 442
commands, 441

converting to numbers, 454
converting to strings, 454
day/month/year date format,

442

month/day/year date format,
442

setting, 441
day/month/year date format, 442

days, between two dates, 455
debugging

programs, 483
subroutines, 486

decimal base marker, 82

decimal numbers, 82, 207
decimal places, number displayed,

58
decrementing

the program loop counter, 513
time, 443

defining
user-defined functions, 151
variables, 107

definite loops, 501
degrees, converting to radians, 142
Degrees mode, 139
delaying the print cycle, 603, 607
deleting

matrix row or column, 352

tag from tagged object, 90
user key assignments, 219

delimiters
* ' delimits algebraic objects,

85
[1 delimits arrays, 83, 173, 347

» delimits complex numbers,
81,158
¥ delimits lists, 86
delimits programs, 86, 468

' " delimits strings, 86
¢ delimits tagged objects, 87

' ' prevents evaluation of a
variable, 84, 112

delimits binary integers, 82,
207, 208

= delimits equations, 129
_ delimits unit objects, 88, 187

delta days, number of days
between dates, 454

-
P
N

Index 829

dependent variable
not used for function plots, 299
plotting range for, 319
used for conic plots, 329, 333

used in statistics, 376

depth ofstack, determining, 78
derivatives

in the EquationWriter
application, 233

keying into the commandline,
420

plotting, 308
user-defined, 422

user-defined prefix is “der”, 108
determinant, calculating, 359

differentiation
in onestep, 421
of algebraic expressions, 419
ofbuilt-in functions, 150

of user-defined functions, 150
stepwise, 419

dimensionless units, 198
directories

concepts, 118

contained in a variable, 110
creating, 120, 123
current directory, 119
determining all variables of a

specific type in, 98
directory path, 119
HOME directory, 118
new variables are added to the

current directory, 121
object type number, 97
parent directory, 119
purging, 123
recalling, 123
searching directories for a

variable name during
evaluation, 121

switching up a level, 122
directory path, 119

is displayedin status area, 48

830 Index

disassembling
complex numbers, 160, 166
objects, 90
unit objects, 206
vectors, 173, 184

disconnected plotting, 299
display

adjusting contrast, 25
clearing messages, 48 .
is divided into three sections, 45
status area, 48

display modes
changing, 59
control format used to display

numbers, 57

displaying an object, from a
program, 523

distribution, algebra, 404

dividing
a variable by a stack value, 115
a vector into a matrix, 355
in the EquationWriter

application, 231
numbers, 134

do error,error trapping, 542
dot product, 176, 353

double-space printing, 606
DO...UNTIL...END program

structure, 510

dropping
the stack, 64, 71, 78

duplicate variable names, allowed
in different directories, 121

duplicating
level 1 in the stack, 65, 71

objects on the stack, 78

E
e, is a built-in constant, 144
echoing stack contents, 71
EDIT menu, 68

editing
equations in the EquationWriter

application, 240
in the command line, 75

elapsed time, calculating, 457
Engineering mode, 58
enter key, 25

duplicateslevel 1, 65
entry modes

for entering matrices, 351
four types, 76

environmental limits, plug-in
cards, 660

environments
Alarm Catalog, 449
are cancelled with the attention

key, 54
Equation Catalog, 258
Graphics, 286, 300

Interactive Stack, 70

Selection, 244, 398

Statistics Catalog, 371
EQ reserved variable

contains the current equation,
108, 253, 286

equal to, comparison test, 491
Equation Catalog, 253, 258

commands, 259

creating a list of equations, 274
exiting, 262
linking equations, 272
reordering, 259

equation to stack, disassembling,
90

equations
can be arguments to a function,

129

contain an “=" sign, 129
editing in the EquationWriter

application, 242
general and principal solutions,

393
linking, 272

solving for a variable, 386
solving quadratics, 389
solving with the Plot application,

266
used to create a user-defined

function, 151
EquationWriter application, 24,

227-250
addition, subtraction, and

multiplication, 230
backspace editing, 241
building unit objects, 204
command line editing, 242
creating equations, 230
derivatives, 233

division and fractions, 231
editing equations, 240
editing subexpressions, 243
exponents, 232

how it is organized, 228
implicit parentheses, 229
inserting objects from the stack,

246
integrals, 234
keyboard operation, 229
numbers and names, 230

powers of10, 233
replacing subexpressions, 247
Selection environment, 243
square root and x-th root, 232
summations, 235

unit objects, 235
using parentheses, 233, 236
viewing algebraics and unit

objects, 240
where function, 236

erasing PICT, 292, 323
error messages, are displayed in

status area, 48

error recovery, from accidentally
purging a variable, 115

Index 831

errors
clearing last, 542
continuing program execution

after, 541

error message, 542

error number, 542

error trapping commands, 542
returning most recent Kermit

error, 614

trapping, 541
user-defined, 546

escape sequences, printing, 607
etcetera key

used to enter accented
characters, 53

used to enter special characters,
54

Euclidean norm, calculating, 359

evaluation
is affected by results mode, 127
of a variable, 109
of a variable containing a

program, 110

of algebraics, 125, 126

oflocal variables, 476, 569

ofstring contents, 90
of symbolic constants, 145
of variables prevented by

quoting, 84, 112
the precedence of operators

determines the order of
evaluation of terms, 128

evaluation of variables, searching
directories for the variable
name, 121

exclusive or
with binary integers, 210
with tests, 493

executing
commands and functions from

the stack, 61
programs, 472

user-defined functions, 152

832 Index

expanding products and powers,
396

exponent

display format, 58
extracting from a number, 148
in the EquationWriter

application, 232
keying in, 47

exponential functions, 137
exponentials, rearrangement using

algebra, 408
expressions

do not contain an “=", 129
using complex numbers in, 164

F

F test, 385

factorial, 147

factoring unit expressions, 199
false, result of a test, 490
FCN menu, 308

Fibonacci numbers, 548
file names, PC versus HP 48, 628
files, sending and receiving, 614
finishing server mode, 614
finite series, 423

first order equation, solving for x,

392
Fix mode, 58

flags, 515
complete list of, 699
I/0 Device, 610
Line-feed, 608

Printing Device, 610
recalling and storing, 518, 556

setting, clearing, and testing,
222, 516

that control the evaluation of

symbolic constants, 145
formal variable, does not contain

an object, 152

format

of numbersin the display, 57
of printed output, 604

FOR...NEXT loop, 506
FOR...STEP loop, 508
fraction approximation, of a

number, 134

fraction conversion
accuracy ofresult, 136
functions, 136

fraction mark, 58

fractional part, math function, 148
fractions

adding using algebra, 409
in the EquationWriter

application, 231
free memory, number of bytes of

unused user memory, 101
freeing memory, 649
freezing part ofthe display, 523
frequencies, in statistical samples,

374
Frobenius norm,calculating, 359
function arguments on the stack,

61
FUNCTION plottype, 327
function plots, 328
functions

analyzing in the Graphics
environment, 306

angle conversion, 142
are a subset of commands, 42
as objects, 90
built-in, 150
creating user-defined functions,

151

defined, 42
math, 132-149

on the keyboard, 134-135
plotting, 328
user-defined, 150

using equations as arguments,
129

using symbolic arguments, 149
future date, calculating, 455

G
general solutions, of an equation,

393
geometric series, 424
getting files, input/output, 614
getting the n-th array element, 90
global names,object type number,

97
globalvariables, 105
Grads mode, 139

annunciator, 48

Graphics environment, 300
adding graphical elements to

PICTin, 337
analyzing p'-tted functions in,

306
introduced, 286

stack-related operations, 3412
zoom operations in, 304

GRAPHICS FCN menu, 308
graphics objects

in programs, 342
introduced, 287
manipulating on the stack, 342
object type number, 97
printing, 606, 610
size, 90

stack form, 340

store pictures, 87
GRAPHICS ZOOM menu, 305
greater than, comparison function,

491

greater than or equal to,
comparison function, 491

greatest integer, math function,

148
Greek letters, entering from the

keyboard, 50

Index 833

H
halt annunciator, 48
halting

programs with the attention key,
54

programs with the HALT
command, 483, 523

the root-finder, 277
hexadecimal base marker, 82
hexadecimal numbers, 82, 207

hidden variables, showing, 394
histogram plot
from Plot application, 336
from Statistics application, 378,

382
HMS format, 456

HOME, is power-on directory, 48
HOME directory, 118, 124

selecting, 122
HP Solve application, 24, 250282

choosing guesses, 266
consists of two menus, 253
customizing the SOLVR menu,

269
editing equations, 256
entering a new equation, 257
finding solutions of programs,

275
how it works, 276

interpreting results, 279
multiple solutions, 266
no solution found, 282
plotting solutions, 266
recalling equations, 256
sign reversal, 280
solving equations, 254, 256
solving expressions, 254
solving programs, 254
specifying an equation from the

Equation Catalog, 258
specifying the current equation,

255

834 Index

storing equations, 256
used with Plot application, 252
using unit objects with, 267
verifying solutions, 265

humidity, effect on calculator, 660

HYP menu, 137

hyperbolic cosine, 137
hyperbolic functions, 137
hyperbolic sine, 137
hyperbolic tangent, 137

i (the imaginary number), 144, 165
ideal gas equation, 185
identity matrix, calculating, 359
IFERR...THEN.. .ELSE...END

error trap for programs, 544
IFERR...THEN.. .END error

trap for programs, 542
IFT if-then-end function, 499

IFTE if-then-else function, 500

IF...THEN.. .ELSE.. END
structure for programs, 496

IF.. THEN.. .END structure for
programs, 494

imaginary part, 166
of a complex array, 357

immediate execution of variables,

112

Immediate-entry mode, 76
entering unit objects, 188

incrementing
the program loop counter, 513
time, 443

indefinite loops, 510
independent memory, 642
independent variable

plotting range for, 319
specifying for plots, 294
statistics, 376

Infrared Printer, 602, 609

character sets, 607, 609

testing, 670
Infrared Transmission mode, 617
input

options, 526
prompting for data input, 524

input/output, 612—-634
Binary/ASCII modes, 629
cable connection, 621

commands for, 614
downloading data, 612
HP 48 to HP 48, 613, 619
Kermitfile transfer protocol,

612

local/local configuration, 620
local/server configuration, 620
PC to HP 48, 621, 623
serial commands for, 632
serial loop backtest, 671
setting I/O parameters, 617
translating character codes, 626
types of data allowed, 613

inserting, matrix row or column,

351
insufficient memory, error

message, 103

integer part, math function, 148
integrals

in the EquationWriter
application, 234

keying into commandline, 428
integrand, approximation, 431
integration

accuracy factor, 433
from the stack, 436

how the HP 48 doesit, 429

numerical, 432

symbolic, 428
interactive programs, 519-540

beeping, 522
building a temporary menu, 539

building the command-line
string, 528

displaying a built-in menu, 534
displaying objects, 523
freezing part of the display, 523
halting programs, 523
labeling program output, 531
options for the input command,

526
prompting for data input, 524
prompting for input, 520
returning a key location, 539
using custom menus, 535
using string commands to label

data output, 532
using tagged objects as data

output, 531
Interactive Stack, 70—-75

activating, 70
exiting, 74
operations, 71
viewing objectsin, 73

internal representation
binary integers, 208
vectors, 171

International System of Units (SI),
187

inverse

of a matrix, 354
of a number, 134

of a variable, 115

inverse hyperbolic cosine, 137
inverse hyperbolic sine, 137
inverse hyperbolic tangent, 137
I/0 Device flag, 610
I/O menu, 614, 632

I/0 SETUP menu, 617

IOPAR reserved variable
stores I/O parameters, 108, 618

isolating a variable, algebra, 389

iterative refinement, solving
systems of equations, 362

Index 835

J
Joe’s grocery, 596

K
keeping the stack, 71
Kermitfile transfer protocol, 612
Kermit modes, server/local, 616
Kermit protocol commands, 614
key assignments, user keyboard,

217

key location,returning, 539
keyboard

blue keys, 50
clearing key assignments, 219
entering letters, 52
entering special characters, 54
Greek letters, 50

hassix levels, 25, 50
keying in a program, 470
keying in accented characters,

53
keying in dates, 441
keying in delimiters, 55
keying in numbers, 47
keying in statistics data, 369
keying in time, 442
keying in vectors, 172
lowercase letters, 50, 52
number pad, 50
orange keys, 50
queues 15 keystrokes, 48
redefining, 216
shift keys, 52
special characters, 50
uppercase letters, 50, 52
using backspace to erase

mistakes, 47

keyboard functions, 134-135
keyboard layout, 26
keystroke queue, 48

836 Index

L
labeling

data output with string
commands, 532

plot axes, 320
program output, 531

largest real number, 81
last argument

restores arguments after
insufficient memory
condition, 103

used to recover purged variable,
115

last argument key, 64
last command key, 77
last menu key, 57
left-shift annunciator, 48, 52
left-shift key, 52

activatesleft-shift keyboard, 25
length, of a vector, 353

less than, comparison function,

491

less than or equal to, comparison
function, 491

letters
entering, 52
generating accents, 53
lowercase, 52
uppercase, 52

levels of the stack, 46

returning current level number,
71

library commands, 653
LIBRARY menu, 651

library objects, 651
attaching to a directory, 651
contain commands and

operations, 89
object type number, 97

lighter contrast, 25
line, drawing, 337

line length, during printing, 610

line termination, during printing,
610

linear equations, 357
accuracy of solution, 362

linear regression, 377
line-feed, dumping the print

buffer, 603

Line-feed flag, 608
linking equations in the Equation

Catalog, 272
listing the stack, creates a list of

objects, 71
lists

are sequences of objects, 86
assembling, 90
creating a subset, 90
mode for keying in, 77
number of elements (size), 90
object type number, 97
position of an object in, 90
put replaces n-th element, 90
replace a sub-list, 90

Local mode, 616

local names, object type number,
97

local variables, 105
evaluation, 476
scope of definition, 476
used in programs, 473

local/local configuration
HP 48 to HP 48, 620

PC to HP 48, 623
local/server configuration
HP 48 to HP 48, 620
PC to HP 48, 624

logarithmic functions, 137
logic commands, 210
logical functions, 493

in algebraics, 493
loops, 501

decrement loop counter, 513
DO...UNTIL...END, 510
FOR.. .NEXT, 506

FOR...STEP, 508
increment loop counter, 513
START. . NEXT, 501
START.. STEP, 504
WHILE.. .REPEAT.. .END,

511
low battery (alert) annunciator, 48
low memory, 102, 103

low-battery condition, replacing
batteries, 660

lowercase alpha lock, 53
lowercase letters, 50, 52

magnitude, of complex numbers,
157

mantissa
display format, 58
extracting from a number, 148
keying in, 47

mark, defines a position in PICT,
302

math functions, 132-149
with vectors, 177

MATR menu, 359

matrices, 83

adding and subtracting, 354
are arrays, 345
arithmetic with vectors, 355
commands for, 359

complex, 357
determinant of, 359

dividing by a vector, 355
editing, 350
identity, 359
keying in, 346
norms of, 359

productof, 354
put replaces n-th element, 90
reciprocal, 354
redimensioning, 359

Index 837

scalar multiplication, 354
transposing, 359

MATRIX menu, 346

MatrixWriter application, 346
deleting row or column, 351
entering arrays, 350
entering statistical data, 370
entry modes for entering

matrices, 351
inserting row or column, 351

maximum, math function, 148
maximum value, of a sample, 374
MAXR,is a built-in constant, 144

mean, of a sample, 374
median

of a list, 563

of statistics data, 560

memory
amount used by objects, 101
archiving, 624, 648

backing up, 624
cancelling clearing operation,

102

checksum of an object, 101
clearing, 101, 102
expanding, 100
freeing merged memory, 649
insufficient memory, 103
low-memory conditions, 102
no room for last stack, 102
no room to show stack, 103

not affected by / [OFF], 25
number of bytes unused, 101
out of memory, 103
RAM and ROM,100, 635
restoring backed up user

memory, 625
MEMORY Arithmetic menu, 115

MEMORY menu, 101

menu descriptions
ALGEBRA,389, 395
CST,213
EDIT,68

838 Index

GRAPHICS FCN, 308
GRAPHICS ZOOM,305
1/0, 614, 632
I/0O SETUP,617
LIBRARY,651

MATRIX,347
MEMORY, 101
MEMORY Arithmetic, 115
MODES, 57
MODES Customization, 220
MTH, 133
MTH BASE,82, 208, 210
MTH HYP, 137
MTH MATR,359
MTH PARTS,138
MTH PROB,147, 383
MTH VECTR,142, 172, 183
PLOT, 290
PLOTR, 292

PRG BRCH,494, 501
PRG CTRL, 483
PRG OBJ, 90
PRG STK, 78
PRG TEST, 491

PRINT,603
SOLVE,253, 256
SOLVE SOLVR,253, 263
STAT, 367
STAT MODL, 376
TIME, 440
TIME ADIJST, 443
TIME ALRM,444
TIME RPT, 445

TIME SET,441
UNITS Catalog, 187, 188, 193
UNITS Command, 187

VAR,106, 112, 118
menu keys, 55
menu labels

bar indicates a directory, 118
describe menu keys,45, 55

in custom menus, 213

variable names, 106, 108

menus
bar indicates sub-menu, 56
cycling multiple pages, 56
define menu keys, 55
leaving, 56
selecting, 56
selecting next and previous, 56
switching to last menu, 57
used in programs, 534

merged memory, 642
messages, 677-693

are displayed in status area, 48
clearing from the display, 48
share “territory” with

annunciators, 48

minimum, math function, 148

minimum value, of a sample, 374
MINR,is a built-in constant, 144
mod (modulo), math function, 148
mode, changing, 77
mode types

Algebraic-entry, 76, 190

Algebraic/Program-entry, 77
Alpha-entry, 52, 53, 222
ASCII Transmission, 617, 629

Automatic Alpha Lock, 222
Binary Transmission, 617, 629

Cylindrical, 170
Degrees, 139
Engineering, 58
Fix, 58
Grads, 139

Immediate-entry, 76

Infrared Transmission, 617

Local, 616
Numerical Results, 127, 144
Polar, 81, 157, 170
Program-entry, 77, 470

Radians, 139

Rectangular, 81, 157, 170

Scientific, 58

Server, 614, 616

Spherical, 170

Standard, 58

Symbolic Evaluation, 223
Symbolic Results, 127, 144
User, 216, 223

Wire Transmission, 617
model, in Statistics application,

376
modes

changing, 554
changing coordinate mode, 171
for printing, 607
reset by clearing memory, 101
selecting, 220
setting, 57
using system flags to set, 222

MODESCustomization menu,

220
MODES menu, 57

modes of entry, four types, 76
MODL menu, 376

month/day/year date format, 442
mostsignificant bits, binary

integers, 208
moving, the stack pointer, 71
moving terms, algebra, 402
MTH BASE menu, 82, 208, 210

MTH HYP menu, 137

MTH MATR menu, 359

MTH menu, 133

MTH PARTS menu, 138
MTH PROB menu, 147, 384

MTH VECTR menu, 142, 171,
183

multiline format, of printed
output, 604

multiplying
a variable by a stack value, 115
in the EquationWriter

application, 230
numbers, 134

Index 839

names
are used to identify variables, 84
contained in a variable, 110
in the EquationWriter

application, 230
reviewing unit names, 191

naming variables, 108
natural (base ¢) antilogarithm, 137
natural (base €) logarithm, 137
negating

complex numbers, 166
contents of a variable, 115

negative numbers, keying in, 47
nested loops, 561
nested parentheses, in algebraics,

128
nesting, user-defined functions,

153
next key, selects next menu, 56

no room for last stack, error
message, 102

no room to show stack, error
message, 103

normal distribution, 385

not

with binary integers, 210
with tests, 493

number pad, of the keyboard, 50

numbers
converting to a character, 90
converting to date, 454
display modes, 57
in the EquationWriter

application, 230
internal representation, 57
keying into the commandline,

47
numerator,in the EquationWriter

application, 229
numerical constants, 144
numerical integration, 432

840 Index

accuracy factor, 433
Numerical Results mode, 127, 144
numerical value of a character, 90

0
OBJ menu, 90

objectto string, converting, 90
object type number, 97

determining, 97
object types, 80, 97

arrays, 83

backup objects, 89
binary integers, 82
built-in commands, 90

built-in functions, 90

complex numbers, 81
counted strings, 86
directories, 89

graphics objects, 87
library objects, 89
lists, 86

matrices, 83

names, 84

programs, 85
real numbers, 81
strings, 86
tagged objects, 87
unit objects, 88
vectors, 83

XLIB names, 89

objects
are delimited by punctuation

characters, 55

checksum, 101
disassembling, 90
inserting from the stack into the

EquationWriter application,
246

manipulation commands for, 90
viewing and editing, 66, 67
viewing in the Interactive Stack,

73

octal base marker, 82
octal numbers, 82, 207

off key, 25
on key,25

becomesthe attention key, 54
one-argument commands, 61

one-dimensional vectors, 83
opening serial port, 614
operations, defined, 42
or

with binary integers, 210
with tests, 493

orange keys, 25, 50
out of memory, 103
output, 531
over-determined systems, 363
overflow, real numbers, 81

P

, is a built-in constant, 144
pacing (receive/transmit), setting,

619
packet, sending commands to a

server, 614

packets, sending commands to a
server, 631

paired-sample statistics, 375
PARAMETRIC plot type, 327
parametric plots, 331
parent directory, 119
parentheses

are highest precedence in
algebraics, 128

delimit complex numbers, 81
used in algebra, 403
used to enter complex numbers,

158
using in the EquationWriter

application, 229, 233, 236

parity
during printing, 610
setting, 617, 619

PARTS menu, 138

past due alarms, 447
path, returning current directory

path, 120
PC file names versus HP 48 file

names, 628

PC to HP 48
cable connection, 621

Input/Output, 621
percent calculations, with unit

objects, 202
percent change, calculating, 138
percent of total, calculating, 138
period,as fraction mark, 58
permutations, calculating, 147

photometric units, 198
pi, 140
picking an object from stack, 78
picking stack contents, 71
PICT

adding graphical elementsto,
336

changing the size of, 325
erasing, 292
erasing and restoring to its

default size, 323
stack manipulation of, 341

pixel coordinates in plots, 323
plane angles, 198
Plot application, 24, 283 -344

contains two menus and special
environment, 286

data elements in, 286

structure of, 286

used with HP Solve application,
252

PLOT menu, 290

PLOT PLOTR menu, 292

plot types, 327
BAR,329, 336
CONIC,327, 328
FUNCTION,328, 329
HISTOGRAM,328, 336

Index 841

PARAMETRIC, 327, 333
POLAR,327, 330
SCATTER,328, 336

TRUTH,327, 333
plotting

analyzing plotted functions, 307
axes labels and intersection, 320

conic plots, 329
connected and disconnected

plotting, 300
coordinate systems for, 324
function plots, 328
how DRAW plots points, 298
paired-sample statistics, 375
parameters stored in PPAR, 322
parametric plots, 332
plotting range of independent

and dependent variables,
320

polar plots, 331
programs and user-defined

functions, 335

refinement options for, 318
resetting plot parameters, 292
resetting plot parameters and

erasing PICT, 323
resolution, 321
single-sample statistics, 374
size of PICT, changing, 325
specifying independent variable,

294

specifying plot parameters, 291
specifying the center and scale,

295
statistical data from the Plot

application, 335
statistics, 379

status message indicates plot
parameters, 291

the derivative ofa plotted
function, 308

truth plots, 333

842 Index

two or more equations, 300

unit objectsin, 335
user-unit and pixel coordinates,

323
what the HP 48 can plot, 283
with autoscaling, 295
with specified y-axis range, 295
working with difficult plots, 314
x-axis display range, 295
y-axis display range, 295
zoom operations, 304
zoom-to-box, 306

zoom-to-box with autoscaling,
306

plotting range
specifying, 319
valuable for parametric and

truth plots, 321
plug-in cards, 635

environmental limits, 660
installing and removing, 636

plug-in RAM,100
plug-in RAM batteries, 661
plug-in ROM, 100
polar angle, 166
Polar mode, 81, 157, 170

annunciator, 157, 170

POLAR plot type, 328
polar plots, 331
Polar/Cylindrical Coordinates

mode, annunciator, 48

Polar/Spherical Coordinates
mode, annunciator, 48

population statistics, 375
port RAM test, 669

position of object in list, 90
power conservation, automatic off

after 10 minutes, 25
power-on directory, is HOME, 48

powers of 10, in the
EquationWriter application,
233

PPAR reserved variable
contains Plot parameters, 108,

321
precedence of functions

in algebraics, 128
in unit objects, 191

precision, of displayed number, 58
predicted value, 376
prefixing user-defined units, 206
previous key

right-shift goes to first page, 56
selects previous menu, 56

previous results, used in chain
calculations, 62

PRG BRCH menu, 494, 501

PRG CTRL menu, 483

PRG OBJ menu, 90

PRG STK menu, 78

PRG TEST menu, 491

primary (unshifted) keyboard, 25,
50

principal solutions, of an equation,
393

PRINT menu, 603

printing
accumulating datain the buffer,

608
and the HP 48 character set, 607

double spacing, 606
escape sequences and control

sequences, 607

graphics objects, 606, 610
modes, 607

PRTPAR contains printer
parameters, 610

setting the delay, 607
strings, 606
testing, 670
the display, 605
the stack, 606

to the serial port, 609
variables, 606

Printing Device flag, 610

printing, 602611
PROB menu, 147, 383

probability, 147
producer price index, 364
product of matrices, 354
products and powers, expanding,

396
program execution, continuing

after error, 541

program-entry annunciator, 470
Program-entry mode, 77, 470

annunciator, 48
entering unit objects, 188

programming examples, 547 - 599
programs

aborting with the attention key,
54

are sequences of commands,85,

468
as arguments, 569

calculating execution time, 551
CASE.. .END structure, 497

compared to algebraics, 125
conditional structures, 494

continuing execution, 483
data input commands for, 520
DO...UNTIL...END structure,

510
editing, 472
evaluating variables containing

programs, 110

evaluation of local names, 476

executing, 472
finding solution with the HP

Solve application, 275
FOR.. .NEXT structure, 506

FOR.. .STEP structure, 508

halting, 483
IF...THEN...ELSE.. .END

structure, 496

IF.. THEN.. .END structure,

494

input/output, 519

Index 843

keying in, 470
loop structures, 501
mode for keying in, 77
object type number, 97
plotting, 334
scope of local variables, 476
single-step execution, 483
START...NEXT structure, 501

START.. .STEP structure, 504

suspending execution with the
WAIT command, 534

that act like user-defined
functions, 478

that manipulate data on the
stack, 479

used by other programs, 582
using alarmsin, 453
using custom menusin, 535
using local variablesin, 473
using subroutines in, 480
using tests in, 490
WHILE.. REPEAT.. .END

structure, 511

working with graphics objects,
342

prompting for input, 520
PRTPARreserved variable

contains printer parameters, 610
contains printing parameters,

108
pseudo-random number, 147
punctuation characters, as

delimiters, 55

purging
alarms, 450

backup objects, 646
directories, 123
objects when out of memory,

103
variables, 114

put element into array, 90

844 Index

Q
quadratic equations

solving, 389, 390

queued keystrokes, 48
quotes, used to prevent evaluation

of a variable, 112

R
radians, converting to degrees, 142
Radians mode, 139

annunciator, 48
radix mark. See fraction mark
RAM

also known as user memory, 100
can be expanded with plug-in

cards, 100

memory which can be altered,
100

(random-access memory), 635
RAM cards, 638

batteries, 638

expanding user memory, 643

installing and removing, 636
used for backup, 644
write-protect switch, 641

random number,selecting, 147

range of values, real numbers, 81
real arrays, object type number, 97
real numbers, 81
compared to complex, 161
converting to complex, 166
converting to fractions, 136
display format, 58
MAXR and MINR, 144

object type number, 97
overflow, 81

range ofvalues, 81
underflow, 81

real part
of a complex array, 357
of a complex number, 166

real to complex, assembling, 90

rearranging terms, the Rules
transformations, 397

recalling
contents of a variable, 110
flags, 518
user key assignments, 220

receive pacing, setting, 619
receiving data, serial I/0, 614
receiving strings, serial I/0O, 632
reciprocal, of a unit object, 201
recover memory, cancelling

clearing operation, 102
recovering

last arguments, 64
previous commandlines, 77

Rectangular mode, 81, 157, 170

annunciator, 158
recursion, calculating Fibonacci

numbers, 548

redefining the keyboard, 216
redimensioning a matrix, 359
registers, variables used instead of,

105
regulatory information, 676
reordering

Equation Catalog, 259
Statistics Catalog, 371
the VAR menu, 113

repair, 674
replace part of a list or string, 90
replacing batteries, 660
rescheduling alarms, 447
reserved variables, 108
resetting
memory, 101
plot parameters, 292, 323

resolution
how it affectsstatistical plots,

321

specifying for plots, 320
speeding up plots by increasing,

321

restoring backed up user memory,
625

results, on the stack, 61
Review Catalog, 112
right-shift annunciator, 48, 52
right-shift key, 52

activates right-shift keyboard, 25
right-shift keyboard, 50
rolling the stack, 71, 78

ROM

can be expanded with plug-in
cards, 100

memory which cannot be
altered, 100

(read-only memory), 635
ROM cards,installing and

removing, 636
root

finding the square or x-th root
of a number, 134

of a plotted function, 308
root-finder

halting, 277
in the HP Solve application, 276
intermediate guesses, 278
using initial guesses, 277

rotate commands, with binary
integers, 210

rotating the stack, 78
rounding errors, solving systems of

equations, 361
rounding numbers, 148
row norm,calculating, 359
RPT menu, 445

rules of precedence, in algebraics,
128

Rules transformations, 397417
examples, 400
executing a transformation, 399
exiting a RULES menu, 400
selecting, 399

Index 845

S
sample statistics, 374
scalar multiplication, matrices, 354

scaling a plot, 295
scatter plot
from Plot application, 336
from Statistics application, 378

Scientific mode, 58
scientific numbers, keying in

exponent and mantissa, 47
scope of local variables, 105, 476
scrolling

of the command line, 46

the stack, 66

EDATreserved variable
contains current statistical

matrix, 108, 369

seed for random number, 147
Selection environment, 243, 398

editing subexpressions, 244
self-test, 667

sending a serial break, 632
sending data, serial I/O, 614
separating variable names by type,

98
serial cable, PC to HP 48, 621
serial I/O commands, 632
serial loop-back test, 671
serial port

configuring for printing, 610
opening and closing, 614
printing, 609

Server mode, 614, 616
starting and finishing, 614

Service, 674

testing calculator operation, 665
SET menu, 441

setting
display I/O parameters, 614
flags, 222
serial I/O timeout, 632

SETUP menu, 617

846 Index

shift commands, with binary
integers, 210

shift keys, 25, 52

in custom menus, 215

press twice to cancel, 52
short-interval repeating alarms,

448
showing hidden variables, 394
sign

changing the sign of a number,
47

determining, 148
of a unit object, 203

significant digits, 58
simplification of algebraics, 128
sine, 140

single-sample statistics, 374
single-step

execution of a program, 483
program operations, 483

size
of a graphics object, 90
of a list or string, 90
of an array (dimension), 90
of PICT, 325

slope, of a plotted function, 308

smallest integer, math function,
148

smallest real number, 81

Snedecor’s F test, 384

solid angles, 198
SOLVE menu, 253, 256
SOLVE SOLVR menu, 263

Solver-list, naming, 270
solving

for a variable, 388
quadratic equations, 389, 390
systems of equations, 356

SOLVR menu, 253, 263
customizing, 269

TPAR reserved variable
contains Statistical parameters,

108, 378

special characters
entering from the keyboard, 50
table of, 54

Spherical mode, 170
square matrix, inverting, 354
square root

in the EquationWriter
application, 232

of a number, 134

squaring a number, 134
stack

clearing, 64
commands, 78

dropping, 64
duplicating level 1, 65
Graphics environment

operations, 341
inserting level 1 into the

EquationWriter application,
246

is a sequence of storage
locations, 46, 60

levels, 46

lost after recovering memory,
102

no room to show, 103

one-argument commands, 61
ordinary calculations, 61
printing, 606
recovering last arguments, 64

splitting equations, 90
stores graphics objects, 87
swapping levels 1 and 2, 63
two-argument commands, 62
using previous results, 62
viewing and editing objects, 67
viewing and editing variables, 67

stack display,is divided into three
sections, 45

stack pointer, moving, 71
stack to array, assembling, 90
stack to list, assembling, 90

stack to tag, assembling, 90

stack to unit, assembling, 90

standard deviation, 374, 375

Standard mode, 58

START...NEXTdefinite loops,
501

START...STEP definite loops,
504

STAT menu, 367

STAT MODL menu, 376

statistics
dependentvariable, 376
designating the current matrix,

369
editing data, 370
entering data, 368, 369

independentvariable, 376
manipulating data, 368
paired-sample statistics, 375
plotting samples, 378
populationstatistics, 375
sample statistics, 374
summation commands, 383

Statistics Catalog, 370
operations, 371
reordering, 371

statistics, 364—385

status area
displays current path, 119
of the display, 48

stepwise differentiation, 419
STK menu, 78

storage locations
the stack, 46, 60

storing
flags, 518
user keys, 217
variables, 107

strings
are sequences of characters, 86

combining, 90
counted strings, 86
executing contents of, 90
from an object, 90

Index 847

making a subset, 90
number of characters (size), 90
object type number, 97
position within anotherstring,

90
printing, 604, 606
replacing a sub-list, 90

Student’st test, 384

subdirectories, 118
can be manipulated like other

variables, 124

creating, 120
evaluating its name to switch to

it, 122
subexpressions

completed with cursor keys in
the EquationWriter
application, 229

defined, 243, 395
editing in the EquationWriter

application, 243
replacing in the EquationWriter

application, 247
the Selection environment, 398

subroutines, 480
single-step execution, 486

subset of a list or string, 90
subtracting

a stack value from variable, 115
in the EquationWriter

application, 230
numbers, 134

summation statistics, 383

summations, 423

calculated from the stack, 426

entering, 423
in the EquationWriter

application, 235
suspending a program, 534
swapping levels in the stack, 63
switching to the parent or HOME

directory, 122

848 Index

symbolic arguments, used in
functions, 149

symbolic constants, 144
converting to values, 144
e, 144

evaluation, 145
i (the imaginary number), 144,

165
x, 140, 144

Symbolic Evaluation mode, 223
symbolic integration, 428
symbolic math, 24
Symbolic Results mode, 127, 144
syntax

of an integral, 428
of variable names, 108
unit objects, 187
user-defined function, 154

system flags, 222, 515
complete list of, 699

systems of equations, 356
accuracy of solution, 361
over-determined, 362
under-determined, 362

T
t test, 384

tagged objects
are labeled objects, 87
as data output, 531
assembling from the stack, 90
deleting the tag, 90
disassembling, 90
object type number, 97
usefulfor labeling, 88

tangent, 140

Taylor’s polynomials
approximation of the integrand,

431

computing for an algebraic, 426
translating point of evaluation,

427

temperature, effect on calculator,

660
temperature conversion, 197
temporary menu, used in

interactive programs, 539
temporary variables, 105

used in programs, 473
TEST menu, 491

test statistics, 383

testing
calculator operation, 665
flags, 222, 516
Infrared Printer, 670

keyboard operation, 667
port RAM test, 669
self-test, 667
serial loop back test, 671

text, entering and editing in the
command line, 46

ticks, 457
system time as a binary integer,

456
time

adjusting, 443
am/pm time format, 442
changing format, 442
commands, 441

required to execute a program,
551

setting, 442
twelve-hour time format, 442

twenty-four hour time format,
442

TIME ADIJST menu, 443

TIME ALRM menu, 444

time arithmetic, 456

TIME menu, 440

TIME RPT menu, 445

TIME SET menu, 441

timeout
automatic off after 10 minutes,

25
setting, 632

total, of a sample, 374
translating characters,

input/output, 626
translating input/output, 617
translation mode, during printing,

610
transmit pacing

during printing, 610
setting, 619

transmitting, serial I/O, 632
transmitting annunciator, 48
transpose, calculating, 359
trigonometric functions, 140

expanding using algebra, 409
trigonometric operations, with unit

objects, 203
true, result of a test, 490

truncating numbers, 148
TRUTH plottype, 327
truth plots, 333
twelve-hour time format, 442
twenty-four hour time format, 442
two-dimensional points, can be

represented complex
numbers, 81

two-dimensional vectors, 83

type
returning object type number,

97, 493

U
under-determined systems, 363
underflow, real numbers, 81

unemployment rate, 364
unit objects

are numbers combined with
unit, 88

assembling from the stack, 90
disassembling, 90
in custom menus, 213

in HP Solve application, 267

Index 849

in the EquationWriter
application, 235

object type number, 97
plotting with, 335
syntax, 187
viewing in the EquationWriter

application, 240
unit vector, 176

for complex numbers, 166
Units application, 24, 185-206

arithmetic operations, 203
assembling unit objects, 206
building unit objects using the

EquationWriter application,
204

built-in units, 193
comparing unit objects, 202
conversion to SI base units, 196
creating unit objects, 188
creating unit objects in the

command line, 190
dimensionless units of angle,

198
disassembling unit objects, 206
entering and editing unit

objects, 188
factoring expressions, 199
ideal gas equation, 185
International System of Units

(SI), 187
percent calculations, 202
photometric units, 198
powers of ten prefixes, 192
precedence of functions, 191
prefixing user-defined units, 206
raising a unit object to a power,

201
reciprocal of a unit object, 201
reviewing unit names, 191
temperature conversion, 197

trigonometric operations, 203
unit conversion, 188
unit object arithmetic, 200

850 Index

unit object conversion, 194
unit object conversion in the

CST menu, 195

unit-object conversion, 193
UNITS Catalog menu, 187, 188
user-defined units, 205
using unit objects in algebraics,

191

UNITS Catalog menu, 187, 188,
193

UNITS Command menu, 187
units of angle, 198
unused memory (free memory),

101

up one directory, 122
uppertail probabilities, 384
uppercase letters, 50, 52
userflags, 515
user flags annunciator, 48
user keyboard, 216

clearing key assignments, 219
customizing operations, 220

editing key assignments, 220
making key assignments, 217
reactivating a key, 219

user keyboard active annunciator,
48

user memory, 100

User mode, 216, 223
user-defined derivatives, 422

are prefixed by “der”, 108
user-defined errors, 546

user-defined functions, 150-155

are actually programs, 154
compared to built-in functions,

150
creating, 151
executing, 152

nesting, 153
plotting, 334

user-defined menus, 213

user-defined transformations, 414

user-defined units, 205

user-key assignments, lost after
recovering memory, 102

user-unit coordinates in plots, 323

Vv

value of symbolic constants, 144
VAR menu, 106, 112, 118

reordering, 113
variable, menu labels give name,

108
variables, 105-117

are named storage locations,
105

arithmetic with, 115
can store directories, 118
changing the contents of a

variable, 111
common variables, 105

containing a directory object,
123

creating, 106, 107

defining, 107
duplicate names, 121
error recovery from accidentally

purging, 115
evaluating a variable’s name,

109
evaluating variables containing

programs, 110

global variables, 105
immediate execution, 112
in custom menus, 213

in other directories, 121
local variables, 105

memory used by, 101
menu labels, 106

names, 84, 108

new variables are added to the
current directory, 121

printing, 606
purging, 114

purging all variables in a
directory, 115

recalling contents, 110
reordering the VAR menu, 113
reserved variables, 108

returning object type number of
object stored in a variable,
97

Review Catalog, 112
scope of local variables, 105
searching for variable name

during evaluation, 121
separating variable names by

object type, 98
stored in variables, 394

storing, 107
temporary variables, 105
that contain directories, 110
that contain names, 110
using global variables, 106
using its contents, 109
using quoted versus unquoted

variable names, 112
viewing and editing, 67

vectors, 83, 170-185

absolute value, 176

are arrays, 345
arithmetic with, 353

arithmetic with matrices, 355

assembling, 173, 183

calculations, 176

commands, 183

compared to complex numbers,
166, 167, 184

complex, 357
cross product, 176, 353
disassembling, 173, 183

display modes, 350
dividing into a matrix, 355
dot product, 176, 353

getting the n-th vector element,
90

how they are displayed, 170

Index 851

internal representation, 171
keying in, 172
length, 353
put replaces n-th element, 90
unit vector, 176

VECTR menu, 142, 171, 183

viewing stack contents, 71

w

wait
suspending program execution,

534
using the argument 0, 539

Warranty, 673
where function, 416

in the EquationWriter
application, 236

WHILE. . REPEAT.. .END, 511

wildcards, with backup objects,
646

Wire Transmission mode, 617
word, certain operations use the

conceptof, 68
wordsize, binary integers, 207
write-protect switch

in RAM cards, 641
installing plug-in cards, 636

X
x-axis display range, specifying,

295
XLIB names

are objects provided by plug-in
cards, 89

object type number, 97
XON/XOFF handshaking, during

printing, 610
XON/XOFF pacing, 619
xor

with binary integers, 210
with tests, 493

852 Index

X test, 384
x-th root, in the EquationWriter

application, 232

Y
y-axis display range, specifying,

295

z
ZOOM menu, 305
zoom operations, 304
zoom-to-box, 306

zoom-to-box with autoscaling, 306

Contacting Hewlett-Packard

For Information About Using the Calculator. If you have
questions about how to use the calculator, first check the table of
contents, the index, and "Answers to Common Questions" in

appendix A. If you can’t find an answer in the manual, you can contact
the Calculator Support department:

Hewlett-Packard

Calculator Support
1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m. to 3:00 p.m.Pacific time

Monday through Friday

For Service. If your calculator doesn’t seem to work properly, refer
to appendix A for diagnostic instructions and information on obtaining
service. If you are in the United States and your calculator requires
service, mail it to the Corvallis Service Center:

Hewlett-Packard

Corvallis Service Center

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2002

If you are outside the United States, refer to appendix A for
information on locating the nearest service center.

HP Calculator Bulletin Board System. The Bulletin Board
providesfor the exchange of software and information between HP
calculator users, developers, and distributors. It operates at
300/1200/2400 baud, full duplex, no parity, 8 bits, 1 stop bit. The
telephone numberis (503) 750-4448. The Bulletin Board is a free
service—you pay for only the long-distance telephone charge.

Contents

Part 4:

Page 468

488

501

515

519

541

547

Part 5:

602

612

635

656

677

694

697

699

707

823

Programming

25: Programming Fundamentals

26: Tests and Conditional Structures

27: Loop Structures

28: Flags

29: Interactive Programs

30: Error Trapping

31: More Programming Examples

Printing, Data Transfer, and Plug-Ins

32: Printing

33: Transferring Data to and from the HP 48

34: Using Plug-in Cards and Libraries

Appendixes and Indexes

A: Support, Batteries, and Service

B: Messages

C: HP 48 Character Codes

D: Menu Numbers and Menu Maps

E: Listing of HP 48 System Flags

Operation Index

Index

[£icicarn
Reorder Number

00048-90003

00048-90078 English

Printed in Canada 7/90

	Cover
	Contents
	Part 4: Programming
	25: Programming Fundamentals
	Entering and Executing a Program
	Entering a Program
	Executing a Program

	Editing a Program
	Using Local Variables
	Programs That Manipulate Data on the Stack
	Using Subroutines
	Single-Step Execution of a Program
	Single-Step Execution from the Start of the Program
	Single-Step Execution from the Middle of the Program
	Single-Step Execution of Subroutines
	Adding Comments to a Program

	26: Tests and Conditional Structures
	Program Tests
	Comparison Functions
	Logical Functions
	Testing Object Types

	Conditional Structures
	The IF...THEN...END Structure
	The IF.. .THEN.. .ELSE...END Structure
	The CASE.. .END Structure

	Conditional Commands
	The IFT (If-Then-End) Command
	The IFTE Function

	27: Loop Structures
	Definite Loop Structures
	The START.. NEXT Structure
	The START...STEP Structure
	The FOR...NEXT Structure
	The FOR...STEP Structure

	Indefinite Loop Structures
	The DO...UNTIL...END Structure
	The WHILE.. REPEAT...END Structure
	Loop Counters (INCR and DECR)

	28: Flags
	Flag Types
	Setting, Clearing, and Testing Flags
	Recalling and Storing the Flag States
	Recalling the Flag States
	Storing the Flag States

	29: Interactive Programs
	Suspending Program Execution for Data Input
	The PROMPT Command
	The BEEP Command
	The DISP, HALT and FREEZE Commands
	The INPUT Command

	Labeling Program Output
	Using Tagged Objects as Data Output
	Using String Commands to Label Data Output
	Pausing to Display Data Output

	Using Menus in Programs
	Displaying a Built-In Menu
	Custom Menus in Programs
	Building a Temporary Menu

	Commands That Return a Key Location
	The WAIT Command with Argument 0
	The WAIT Command with Argument -1
	The KEY Command

	Turning the HP 48 Off from a Program

	30: Error Trapping
	The IFERR...THEN...END Structure
	The IFERR...THEN.. ELSE.. END Structure
	User-Defined Errors

	31: More Programming Examples
	Fibonacci Numbers
	FIB1 (Fibonacci Numbers, Recursive Version)
	FIB2 (Fibonacci Numbers, Loop Version)
	FIBT (Comparing Program-Execution Time)

	Displaying a Binary Integer
	PAD (Pad with Leading Spaces)
	PRESERVE (Save and Restore Previous Status)
	BDISP (Binary Display)

	Median of Statistics Data
	SORT (Sort a List)
	LMED (Median of a List)
	MEDIAN (Median of Statistics Data)

	Expanding and Collecting Completely
	MULTI (Multiple Execution)
	EXCO (Expand and Collect Completely)

	Finding the Minimum or Maximum Element of an Array
	MNX (Finding the Minimum or Maximum Element of an Array— Technique 1)
	MNX2 (Finding the Minimum or Maximum Element of an Array— Technique 2)

	Verification of Program Arguments
	NAMES (Does the List Contain Exactly Two Names?)
	VFY (Verify Program Argument)

	Bessel Functions
	Animation of Successive Taylor’s Polynomials
	Drawing a Sine Curve and Converting It to a Graphics Object
	Superposition of Successive Taylor’s Polynomials
	Animation of Taylor’s Polynomials

	Programmatic Use of Statistics and Plotting
	Animation of a Graphical Image

	Part 5: Printing, Data Transfer, and Plug-Ins
	32: Printing
	Printing with an HP 82240B Printer
	Print Formats
	Basic Printing Commands
	Printing a Text String
	Printing a Graphics Object
	Double Space Printing
	Setting the Delay
	The HP 48 Character Set
	Sending Escape Sequences and Control Codes
	Accumulating Data in the Printer Buffer

	Printing with an HP 82240A Infrared Printer
	Printing to the Serial Port
	The PRTPAR Variable

	33: Transferring Data to and from the HP 48
	Types of Data You Can Transfer
	The I/O Menu
	Local and Server Modes
	Setting the I/O Parameters
	The SETUP Menu
	The IOPAR Variable

	Transferring Data between Two HP 48’s
	Transferring Data between a Computer and the HP 48
	Cable Connection
	Transferring Data
	Backing Up All of HP 48 Memory
	Character Translations (TRANSIO)
	More About File Names
	Errors
	ASCII and Binary Transmission Modes
	Sending Commandsto a Server (PKT)

	Serial Commands

	34: Using Plug-in Cards and Libraries
	Types of Memory
	Installing and Removing Plug-In Cards
	RAM Cards
	Preparing the Card for Installation
	Uses for RAM Cards

	Using RAM Cards to Expand User Memory (Merged Memory)
	Using RAM Cards for Backup (Independent Memory)
	Backing Up Objects into Independent Memory
	Accessing Backup Objects
	Backing Up Objects into User Memory (Port 0)
	Backing Up All of Memory

	Freeing Merged Memory
	Using Application Cards and Libraries
	Attaching a Library to a Directory
	Accessing Library Operations (The LIBRARY Menu)
	Additional Commands That Access Libraries

	Appendixes and Indexes
	A: Support, Batteries, and Service
	Calculator Support
	Answers to Common Questions
	Environmental Limits
	When to Replace Batteries
	Changing Batteries
	Battery Types
	Changing Calculator Batteries
	Changing a RAM Card Battery

	Testing Calculator Operation
	Self-Test
	Keyboard Test
	Port RAM Test
	IR Loop-Back Test
	Serial Loop-Back Test
	Limited One-Year Warranty
	If the Calculator Requires Service
	Regulatory Information

	B: Messages
	C: HP 48 Character Codes
	D: Menu Numbers
	E: Listing of HP 48 System Flags
	Operation Index
	Index

