
O Pree

Scientific Expandable

©QUation Mut Apy

ENTER
USR EN] ary

: SOLVE i
a

RAD POLAR ; EAR STACK 4 age
~_—

HO Mery ann i

HP 48SX Scientific Expandable
Calculator
a Se ee eee ee eee
Owner’s Manual
Volume I!

Kir HEWLETT
PACKARD

Edition 4 July 1990
Reorder Number 00048-90003

Notice

For warranty and regulatory information for this calculator, see pages 673
and 676.

This manual and any examples contained herein are provided “as is” and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not

limited to, the implied warranties of merchantability and fitness for a
particular purpose. Hewlett-Packard Co. shall not be liable for any errors
or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein.

© Hewlett-Packard Co. 1990. All rights reserved. Reproduction,
adaptation, or translation of this manual is prohibited without prior
written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

© Trustees of Columbia University in the City of New York, 1989.
Permission is granted to any individual or institution to use, copy, or
redistribute Kermit software so long as it is not sold for profit, provided
this copyright notice is retained.

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 January 1990 Mfg. No. 00048-90004
Edition 2 April 1990 Mfg. No. 00048-90059
Edition 3 May 1990 Mfg. No. 00048-90062
Edition 4 July 1990 Mfg. No. 00048-90078

Contents

Part 4: Programming

25 468
470
470
472
472
473
479
480
483
484
486

486

26 488
490
491
493
494
494
494
496
498
499
500
500

Programming Fundamentals
Entering and Executing a Program

Entering a Program
Executing a Program

Editing a Program
Using Local Variables
Programs That Manipulate Data on the Stack
Using Subroutines
Single-Step Execution of a Program

Single-Step Execution from the Start of the Program
Single-Step Execution from the Middle of
the Program

Single-Step Execution of Subroutines

Tests and Conditional Structures
Program Tests

Comparison Functions
Logical Functions
Testing Object Types

Conditional Structures
The IF... THEN. ..END Structure

The IF. ..THEN...ELSE. ..END Structure

The CASE...END Structure

Conditional Commands
The IFT (If-Then-End) Command
The IFTE Function

Contents 461

al

28

29

462

501
501
502
504
506
508
510
510
512
313

315
515
316
918
518
518

519
520
521
523
523
924
931
532
933
934
534
534
935
539
939
539
539
aD
340

Contents

Loop Structures
Definite Loop Structures

The START. ..NEXT Structure
The START. . STEP Structure
The FOR...NEXT Structure
The FOR...STEP Structure

Indefinite Loop Structures
The DO...UNTIL. ..END Structure
The WHILE. ..REPEAT...END Structure
Loop Counters (INCR and DECR)

Flags
Flag Types
Setting, Clearing, and Testing Flags
Recalling and Storing the Flag States

Recalling the Flag States
Storing the Flag States

Interactive Programs
Suspending Program Execution for Data Input

The PROMPT Command
The BEEP Command
The DISP, HALT and FREEZE Commands
The INPUT Command

Labeling Program Output
Using Tagged Objects as Data Output
Using String Commands to Label Data Output
Pausing to Display Data Output

Using Menus in Programs
Displaying a Built-In Menu
Custom Menus in Programs
Building a Temporary Menu

Commands That Return a Key Location
The WAIT Command with Argument 0
The WAIT Command with Argument -1
The KEY Command

Turning the HP 48 Off from a Program

30

31

541

544
346

547

548
350
591
554
904
555
557
560
261
563
S65
568
569
970
572

973

576

379
580

982
985
588
588

589
991

Error Trapping
The IFERR...THEN...END Structure

The IFERR...THEN...ELSE. ..END Structure

User-Defined Errors

More Programming Examples
Fibonacci Numbers

FIB1 (Fibonacci Numbers, Recursive Version)
FIB2 (Fibonacci Numbers, Loop Version)
FIBT (Comparing Program-Execution Time)

Displaying a Binary Integer
PAD (Pad with Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display)

Median of Statistics Data
SORT (Sort a List)
LMED (Median of a List)
MEDIAN (Median of Statistics Data)

Expanding and Collecting Completely
MULTI (Multiple Execution)
EXCO (Expand and Collect Completely)

Finding the Minimum or Maximum Element of
an Array

MNX (Finding the Minimum or Maximum Element
of an Array — Technique 1)

MNX2 (Finding the Minimum or Maximum Element
of an Array — Technique 2)

Verification of Program Arguments
NAMES (Does the List Contain Exactly Two
Names?)

VFY (Verify Program Argument)
Bessel Functions
Animation of Successive Taylor’s Polynomials

Drawing a Sine Curve and Converting It to a
Graphics Object

Superposition of Successive Taylor’s Polynomials
Animation of Taylor’s Polynomials

Contents 463

§92
997

Programmatic Use of Statistics and Plotting
Animation of a Graphical Image

Part 5: Printing, Data Transfer, and

32

33

et

Plug-Ins
602 Printing
602 _—sw Printing with an HP.82240B Printer
604 Print Formats
605 Basic Printing Commands
606 Printing a Text String
606 Printing a Graphics Object
607 Double Space Printing
607 Setting the Delay
607 The HP 48 Character Set
608 Sending Escape Sequences and Control Codes
608 Accumulating Data in the Printer Buffer
609 =‘ Printing with an HP 82240A Infrared Printer
610 Printing to the Serial Port
611 The PRTPAR Variable

612 Transferring Data to and from the HP 48
613 Types of Data You Can Transfer
614 The I/O Menu .
616 Local and Server Modes
617 Setting the I/O Parameters
617 The SETUP Menu
618 The IOPAR Variable
619 Transferring Data between Two HP 48’s
621 Transferring Data between a Computer and the HP 48
621 Cable Connection
622 Transferring Data
624 Backing Up All of HP 48 Memory
626 Character Translations (TRANSIO)
628 More About File Names
629 Errors
629 ASCII and Binary Transmission Modes

Contents

34

656
656
656
660
660
661
661
661
663
665
667

Sending Commands to a Server (PKT)
Serial Commands

Using Plug-in Cards and Libraries
Types of Memory
Installing and Removing Plug-In Cards
RAM Cards

Preparing the Card for Installation
Uses for RAM Cards

Using RAM Cards to Expand User Memory (Merged
Memory)

Using RAM Cards for Backup (Independent Memory)
Backing Up Objects into Independent Memory
Accessing Backup Objects
Backing Up Objects into User Memory (Port 0)
Backing Up All of Memory

Freeing Merged Memory
Using Application Cards and Libraries

Attaching a Library to a Directory
Accessing Library Operations (The LIBRARY
Menu)

Additional Commands That Access Libraries

Appendixes and Indexes

Support, Batteries, and Service
Calculator Support
Answers to Common Questions
Environmental Limits
When to Replace Batteries
Changing Batteries

Battery Types

Changing Calculator Batteries
Changing a RAM Card Battery

Testing Calculator Operation
Self-Test

Contents 465

mo © W@W

667

670
671
673
674
676

677

694

697

707

823

Contents

Keyboard Test
Port RAM Test
IR Loop-Back Test
Serial Loop-Back Test
Limited One-Year Warranty
If the Calculator Requires Service
Regulatory Information

Messages

HP 48 Character Codes

Menu Numbers

Listing of HP 48 System Flags

Operation Index

index

Programming

25

Programming Fundamentals

A program is an object defined by « + delimiters. A program is itself
composed of objects and commands whose execution is delayed until the
program is executed. Because a program is an object, it can be:

w Placed on the stack.

ws Stored in a variable.

w Executed repeatedly.

w Executed by another program.

The following example calculates the volume of a sphere, first using
keystrokes and then using a program.

Example: Calculations with Keystrokes and with a Program.
The volume of a sphere of radius 7 is calculated by:

V = Sar

To do one calculation, you can use the following keystrokes. (Assume you
have already placed the radius on the stack.)

3) Cal@) &) 4 &) 3 &) fe)GNUM)

468 j$=‘®25: Programming Fundamentals

Each time you press a command key, it is immediately executed, leaving
an intermediate result on the stack.

If you want to calculate the volumes of many spheres, you can create a
program. The following program assumes the radius is on the stack at the
start of program execution:

#3 * nr #4 % 3 7 3HUM ®

After keying in the « + delimiters (by pressing (4)[«_»]), you use the
same keystrokes to enter the subsequent objects and commands as you
did before. However, the objects and commands that you type are simply
listed in the command line — their execution is delayed until you execute
the program itself.

Because the program is an object, you can place it on the stack and save it
in a variable. To place the program on the stack, press (ENTER). To store
the program in a variable named VOL, type ['] VOL [STO]. Now you can
calculate the volume of any sphere simply by placing the radius on n the

can execute VOL as many times as you want; it acts like a built-in

command.

VOL is a program of the simplest form; a series of objects and commands,
written in the same order as you would type them from the keyboard. In
following chapters, you'll learn about more advanced HP 48 programming
features:

= Conditional expressions (chapter 26).

= Looping structures (chapter 27).

m Flags (chapter 28).

w Interactive programs (chapter 29).

a Error trapping (chapter 30).

This chapter covers basic HP 48 programming concepts:

= Entering and executing programs.

uw Editing programs.

= Using local variables in programs.

a Stack manipulation of data in programs.

25: Programming Fundamentals 469

= Using subroutines.

= Single-step execution of programs.

The Programmer’s Reference Manual for the HP 48 (part number 00048-
90054) contains useful programming information, including complete
syntax information for all HP 48 commands.

Entering and Executing a Program

Entering a Program

To define the beginning of a program, press [4] [«_»]. The FRG
annunciator appears, indicating Program-entry mode. In this mode,
pressing the key for any command now writes the command’s name in the
command line. (You can also type the command name into the command
line with alpha characters.) Only nonprogrammable operations such as

and are executed.

The following program, SPH, calculates the volume of a spherical cap of
radius r and height h.

The volume is calculated by V = ah (3r -h).

470 825: Programming Fundamentals

In this and following chapters on programming, “stack diagrams” are used
as appropriate to show what arguments must be on the stack before a
program is executed and what results the program leaves on the stack.
Here is the stack diagram for SPH.

ee ee

The diagram indicates that SPH takes no arguments from the stack and
returns the volume of the spherical cap to level 1. (SPH assumes that you
have stored the numerical value for the radius in variable R and the
numerical value for the height in variable H.)

Program listings are shown with program steps in the left column and
associated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Program: Keys: Comments:

« (4) [« >] Begins the program.

‘173 (1 (=) 3 Begins the algebraic expression to
calculate the volume.

xT#H*2 [x] (4) Multiplies by h?.
[x] H [y*] 2

¥€3*R-H)' [x] (4) (OQ) Multiplies by 3r — h, completing
3 [x] R [-] the calculation and ending the
H (> [>] expression.

SHUM (>) (>NUM] Converts x to a number.

% Ends the program.

Puts the program on the stack.

(') SPH Stores the program in variable
SPH.

25: Programming Fundamentals 471

Executing a Program

There are several ways to execute SPH:

= Type SPH in the command line, then press [ENTER].

w= Select the VAR menu, then press | :

w If the program or the program name is wiem in level 1, press
EVAL}.

Example: Executing a Program from the VAR Menu. Use SPH
to calculate the volume of a spherical cap of radius 7 = 10 mm and height
h = 3mm.

First, store the data in the appropriate variables. Then select the VAR
menu and execute the program. The answer is returned to level 1 of the
stack.

10 [) R (STO} 1s C5t. 169HN4942
3 [] H (STO! So aie ee |

Editing a Program

Follow the same rules to edit a program as you do to edit any other object
(see “Displaying Objects For Viewing or Editing” on page 66).

Example: Editing a Program. Edit SPH so that it stores the number
in level 1 into variable H and the number in level 2 into variable R.

Use the VAR menu and to call SPH to the command line for
editing.

4 '1/341#H"?2*(3*R-H

(VSI

Move the cursor past the first program delimiter and insert the new
program steps.

(>) () H (&) (Sto) «'H' STO 'R' STO 4143.
() R &) (Sto) a >NUM

472 25: Programming Fundamentals

Save the edited version of SPH in the variable. To verify that the changes
were saved, recall SPH to the command line.

< 'H' STO 'R' STO |
0 eSPH™ Lv3ensH"2#(34R-H) |
ea]viisiha ad

42K IP/SRIPS] €DEL [CEL | INS [STK

No further changes need to be made, so press [ATTN] to abort the editing
session or [ENTER] to resave the program.

The edited version of SPH now takes two arguments from the stack, the
height from level 1 and the radius from level 2.

Using Local Variables

The program SPH in the previous section uses global variables for data
storage and recall. There are disadvantages to using global variables in
programs:

a After program execution, global variables that you no longer need to
use must be purged if you want to clear the VAR menu and free user
memory.

= You must explicitly store data in global variables prior to program
execution, or have the program execute STO.

In this section, you'll see how /ocal variables address the disadvantages of
global variables in programs. Local variables are temporary variables
created by a program. They exist only while the program is being executed
and cannot be used outside the program. They never appear in the VAR
menu.

To create local variables, you must use the following sequence of
command and objects, called a /ocal variable structure:

1. The — command (press [r>)(>)).

2. One or more variable names.

3. A procedure (an algebraic expression or a program) that includes
the names. This procedure is called the defining procedure.

25: Programming Fundamentals 473

The structure looks like this:

« +name,name,...name, «program» »

or

« +name,name,...name, ‘algebraic expression' +

When the — command is executed in a program, n values are taken from
the stack and assigned to variables name,, name, ... Name,,. For
example, if the stack contains:

{ ROME }

45

3: 14

f of
PRRTeT PRUE T AVP THATRIVErTET EMSE,

then:

= > a creates local variable a = 20.

= > 3 b creates local variables a = 6 and b = 20.

= > a b c creates local variables a = 10, b = 6, andc = 20.

The defining procedure then uses the local variables to do calculations.

(By convention, this manual uses lowercase names for local variables.)

The following program SPHLV calculates the volume of a spherical cap
using local variables. The defining procedure is an algebraic expression.

eer as

1:h 1: volume

474 25: Programming Fundamentals

Program: Comments:

rh Creates local variables r and h for
the radius of the sphere and height
of the cap.

'1/Sereh*2e¢3er—-h) ! Expresses the defining procedure. In
this program, the defining procedure
for the local variable structure is an
algebraic expression.

+HUM Converts x to a number.

%

() SPHLV Stores the program in variable
SPHLY.

Example: Executing a Program That Uses Local Variables.
Use SPHLV to calculate the volume of a spherical cap of radius r = 10
mm and height h = 3 mm.

Place the data on the stack in the correct order, then select the VAR

menu and execute the program.

10 [ENTER Se 3 : 294. 469884942

The preceding program and example demonstrate the advantages of local
variable structures:

= The — command stores the value(s) from the stack in the
corresponding variable(s) — you do not need to explicitly execute
STO.

= Local variables automatically disappear when the defining procedure
for which they are created has completed execution. Consequently,
local variables do not appear in the VAR menu and occupy user
memory only during program execution.

= Local variables exist only within their defining procedure — different
local variable structures can use the same variable names without

conflict.

25: Programming Fundamentals 475

Evaluation of Local Names. Local names are evaluated differently
than global names. When a global name is evaluated, the object stored in
the corresponding variable is itself evaluated. (You’ve seen how programs
stored in global variables are automatically evaluated when the name is
evaluated.)

When a local name is evaluated, the object stored in the corresponding
variable is returned to the stack but is not evaluated. When a local
variable contains a number, the effect is identical to evaluation of a global
name, since putting a number on the stack is equivalent to evaluating it.
However, if a local variable contains a program, algebraic expression, or
global variable name, that object must be explicitly evaluated (by executing
EVAL) after it is returned to the stack.

Scope of Local Variables. Local variables exist on/y in the procedure
for which they are defined. The following sample program illustrates the
availability of local variables in nested defining procedures (procedures
within procedures).

Program: Comments:

« Starts the outer program.

eee For these arbitrary program steps,
no local variables are available.

% abc Creates local variables a, b, and c.

« Starts the defining procedure (a
program) for local variables a, b, and

c. This procedure is nested in the
outer program. Local variables a, b,
and c are available in this procedure.

ab+¢t+ct

+*def Defines local variables d, e, and f.

Starts the defining procedure (an
algebraic expression) for local
variables d, e, and f. This procedure
is nested in the defining procedure
for local variables a, b, and c. Local
variables a, b, c, d, e, and f are

476 25: Programming Fundamentals
*

a-Cd#etf >

ac?7’-

a

available in this procedure.

Ends the defining procedure for
local variables d, e, f. Local variables
d, e, and f no longer exist.

Local variables a, b, and c remain
available.

Ends the defining procedure for
local variables a, b, and c. Local
variables a, b, and c no longer exist.

For these arbitrary program steps,
no local variables are available.

Ends the outer program.

Since local variables a, b, and c already exist when the defining procedure
for local variables d, e, and f is executed, they are available for use in that
procedure. However, suppose that the defining procedure for local
variables d, e, and f calls a program that you previously created and stored
in global variable P/.

Program:

Pita-Cdtetf >

Comments:

Defines local variables d, e, and f.

Starts the defining procedure for
local variables d, e, and f.

The defining procedure executes the
program stored in variable PJ.

25: Programming Fundamentals 477

Ends the defining procedure for
local variables d, e, and f.

*

The six local variables are not available in program PJ because they did
not exist when you created PJ. The objects stored in the local variables
are available to program P1 only if you put those objects on the stack as
arguments for P/ or store those objects in global variables.

Conversely, program PJ can create its own local variable structure with
local variables a, c, and f, for example, without conflicting with the local
variables of the same name in the procedure that calls PJ.

Programs That Act Like User-Defined Functions. In this chapter
you've learned that the defining procedure for a local variable structure
can be either an algebraic expression or a program. In chapter 10, you
learned that a user-defined function is a program that consists solely of a
local variable structure whose defining procedure is an algebraic
expression.

A program that begins with a local variable structure whose defining
procedure is a program acts like a user-defined function in two ways: It
takes numeric or symbolic arguments, and takes those arguments either
from the stack or in algebraic syntax. However, it does not have a
derivative. (The defining program must, like algebraic defining
procedures, return only one result to the stack.)

The advantage of using a program as the defining procedure for a local
variable structure is that a program can contain commands not allowed in
algebraic expressions. For example, the loop structures described in
chapter 27 are not allowed in algebraic expressions. The program BER in
chapter 31 calculates a Bessel function approximation to 12-digit accuracy.
BER uses a local variable structure whose defining procedure is an RPN
program that contains a FOR...STEP structure and a nested
IF... THEN...ELSE...END structure. BER is not differentiable, but the
example in chapter 31 demonstrates that it can take its arguments either
from the stack or in algebraic syntax.

478 $25: Programming Fundamentals

Programs That Manipulate Data on the Stack

The programs SPH (page 471) and SPHLV (page 475) in this chapter use
variables for data storage and recall. An alternative programming method
manipulates numbers on the stack without storing them in variables. This
method usually results in faster program execution time. There are several
disadvantages of the stack manipulation method:

w As you write a program, the location of the data on the stack must be
tracked. For example, data arguments must be duplicated if used by
more than one command.

= A program that manipulates data on the stack is generally harder to
read and understand than a program that uses variables.

The following program SPHSTACK uses the stack-manipulation method
to calculate the volume of spherical cap. (SPH and SPHLV execute the
same calculation.)

2 iri, 2s

i:h i: volume

Program: Comments:

<

DUP Makes a copy of the number in level
1 (the height).

ROT Rotates the number now in level 3
(the radius) to level 1.

3 # Multiplies the radius by 3.

SWAP — Swaps the height into level 1 and
subtracts, calculating 37 — A.

25: Programming Fundamentals 479

SWAP SQ * Swaps the copy of the height into
level 1, squares it, and multiplies by
3 —h.

Te 37 Multiplies by x and divides by 3,
completing the calculation.

+NUM Converts x to a number.

%

() SPHSTACK Puts the program on the stack, then
stores it in SPHSTACK,.

Using Subroutines

Remember that a program is composed of objects and commands that are
executed when the program is executed. Because a program is itself an
object, it can be used by another program. When program B is used by
program A, program A calls program B, and program B is a subroutine in
program A.

This section introduces two programs to illustrate the use of subroutines.
The first program, TORSA, calculates the surface area of a torus of inner
radius a and outer radius b. TORSA is used as subroutine in the second
program.

The surface area is calculated by:

A =12*(b* - a?)

480 25: Programming Fundamentals

Here is the stack diagram and program listing for TORSA.

2:a 23

i: b 1: area

Program: Comments:

«

> ab Creates local variables a and b.

'T“2#(b“2-a%2> ' Expresses the defining procedure for
the local variable structure.

+HUM Converts x to a number.

%

Puts the program on the stack.

(‘]) TORSA Stores the program in TORSA.

Program TORSV calculates the volume of a torus. It calls TORSA to
execute part of the calculation.

The formula for the volume of a torus is:

1 > 2
Vaan (a +b)(b -a)

This equation can be rewritten as:

1 97,2 _ 2 ore: (b* - a*)(b -a)

The quantity x” (b? - a”) in this equation is the surface area of a torus
and can be calculated by executing TORSA.

25: Programming Fundamentals 481

Here is a stack diagram for TORSV.

cia Ze

i: b i: volume

Program: Comments:

&

* ab Creates local variables a and b.

« Starts the defining procedure (a
program) for the local variable
structure.

a b TORSA Puts the numbers stored in @ and b
on the stack as arguments for
TORSA, then call TORSA to
calculate the area x(b? - a’).

ba-#4/¥- Completes the volume calculation.

% Ends the defining procedure.

% Ends the program.

Puts the program on the stack.

(‘] TORSV Stores the program in TORSV.

TORSV calls program TORSA to execute part of the volume calculation.
TORSA is a subroutine in TORSV. In turn, another program can call
TORSY.

Example: Executing a Program That Uses a Subroutine. Use
TORSV to calculate the volume of a torus of inner radius a = 6 inches

and outer radius b = 8 inches.

Place the data on the stack according to the stack diagram. Select the
VAR menu and execute the program.

6 8 Lt isos 174461616
TORSY TORS TORSA[SPHL| oH | oR | SPH

482 25: Programming Fundamentals

Single-Step Execution of a Program

It’s easier to understand how a program works if you execute it step by
step, observing the effect of each step. Doing this can help you “debug”
your own programs or understand programs written by others.

The operations for single-stepping through a program are contained in
the PRG CTRL menu.

Single-Step Operations

Programmable Description
Command

Resumes execution of a halted

program.

Takes as its argument the program or
program name in level 1. Starts
program execution, then suspends it
as if HALT were the first program
command.

Executes the next object or command
in the suspended program.

Sameas S87 except when the
next program step is a subroutine.
When the next step is a subroutine,
single-steps to the first step in that
subroutine.

25: Programming Fundamentals 483

Single-Step Operations (continued)

Programmable Description
Command

Displays the next one or two objects,
but does not execute them.

Suspends program execution at the
location of the HALT command in the
program.

Cancels all suspended programs.

Single-Step Execution from the Start of the
Program

In many cases, you want to begin single-step execution at the beginning of
a program. The general procedure is:

1. Put the program or program name in the command line or level 1.

suspended before execution of the first object or command. The
HALT annunciator is displayed in the status area.

execute, the next one or two program steps. The display persists
until the next keystroke.

ST once to see the first program step displayed in the
status area and then executed.

5. You can now:

m Keep pressing $51 to display and execute sequential steps.

= Press (NEXT at any time to display but not execute the next
one or two program steps.

= Press [€}[CONT] to continue normal execution.

m Press KILL. to abandon further program execution.

484 125: Programming Fundamentals

Example: Single-Step Program Execution. Execute program
TORSYV step by step. Use the torus from the previous example (a = 6
inches, b = 8 inches).

Select the VAR menu and enter the data. Return the program name to
the command line. Select the PRG CTRL menu and execute $BUG .
The HALT annunciator turns on, indicating that program execution has

been started, then suspended.

6 alia R) 8 (ENTER! (ENTER}

6
:

ET d KILL

You can see that the first program step took the two arguments from the
stack and stored them in local variables a and b.

Refer to the rules at the beginning of this section. You’ve executed the
first four steps and can now choose one of the four alternatives described
in step 5. For this example, continue single-step execution until the HALT
annunciator disappears. Watch the stack and status area as you single-step
ack the program.

.. oes 1: 138. 174461616
ews | st [seT4

25: Programming Fundamentals 485

Single-Step Execution from the Middle of the
Program

You may want to start single-step execution at some point in the program
other than the first step. To do so:

1. Insert the HALT command in the program. Place it where you want
to begin single-step execution.

2. Execute the program. When the HALT command is executed, the
program stops and the HALT annunciator is displayed.

3. Follow steps 3—5 on page 484.

4. When you want the program to run normally again, remove the
HALT command from the program.

Single-Step Execution of Subroutines

However, you may want to uss through a subroutine, executing
each individual step alee than the program as a whole. To do so, use the

next program step isa aes In this case, = 37: “* Si
the first step in the subroutine.

Example: Single-Step Execution of a Subroutine. Execute
program TORSV step by step to calculate the volume of a torus of radii a
= 10 inches and b = 20 inches. When you reach subroutine TORSA,
execute it step by step.

Select the VAR menu and key in the data. Return the program name to
the command line, select the PRG CTRL menu, and execute DBUG.
Execute the first four steps of the program, then check the next step.

10 (ENTER) 12

g 16
: 1?

OEUG | SST [SST+] NENT | HALT KILL |

486 25: Programming Fundamentals

Then = that you are now at the first step of TORSA, not then next tates
of TORSV.

1g
12

remainder o of ihe: program, ¢ or ae any time, press [€))(CONT) to resume
program execution.

25: Programming Fundamentals 487

26

Tests and Conditional Structures

This chapter describes commands and program structures that, used
together, let programs ask questions and make decisions:

= Comparison functions and logical functions let a program test whether
or not a specified condition exists.

a Program structures called conditional structures use test results to
make decisions.

Example: Tests and Conditional Structures. The program in this
example uses a test inside a conditional structure to execute the following
task:

“If the two numbers on the stack have the same value, drop one of the
numbers from the stack and store the other in variable V1. If, however, the
numbers are not equal, store the number from level 1 in V1 and the number
from level 2 in V2.”

488 26: Tests and Conditional Structures

Program:

«

DUPe

IF

SAME

THEN

DROP
'¥1' STO

ELSE

'Wi' STO
'Y2' STO

END

e

[ENTER] [) TST [STO}

Comments:

Starts the program.

Copies the numbers in levels 1 and 2.

Starts the test clause of the

conditional structure.

Tests if the numbers have the same

value.

Ends the test clause and starts the
true clause of the conditional
structure. The true clause is executed

only if the test is true.

If the test is true (if the numbers are
the same), then drops one of the
numbers from the stack and stores
the remaining number in V7.

Starts the false clause of the

conditional structure. The false
clause is executed only if the test is
false.

If the test is false, (if the numbers
are not the same), then stores the
level 1 number in V1 and the level 2
number in V2.

Ends the conditional structure.

Ends the program.

Puts the program on the stack and
stores it in TST.

26: Tests and Conditional Structures 489

Enter the numbers 26 and 52, then execute TST to compare their values.

26 52 Let « [sen] |

Since the two number were not equal, the VAR menu now contains two
new variables V7 and V2. You can verify that the variables contain the
numbers you entered by pressing both menu keys.

Program Tests

A test is an algebraic or a command sequence that returns a test result to
the stack. A test result is either a 1— which means the test was true, or a
@— which means the test was false. For example, 'X<‘'' is a test. The
same test could be executed as a command sequence: ¥ ‘Y <. In either
case, if X contains 5 and Y contains 10, then the test is true, and 1 is
returned to the stack. Conditional structures (discussed later in the
chapter) use a test result to determine which clause of the structure to
execute.

The commands used in tests can be categorized as follows:

= Comparison functions.

w Logical functions.

w Flag-testing commands, Flags and flag testing commands are
discussed in chapter 28, “Flags.”

These commands are located in the PRG TEST menu (press

490 26: Tests and Conditional Structures

Comparison Functions

Comparison functions compare two objects.

Comparison Functions

Keys | Programmable Description
Command

Less than.

Greater than.

Less than or equal to.

Greater than or equal to.

Tests equality of two objects. For
algebraics or names, returns an
expression that can be evaluated to
produce a test result based on
numerical values.

Not equal. Like = =, but returns the
opposite test result.

Like = =, but does not allowa
comparison between the numerical
value of an algebraic (or name) and a
number.

<, >, <and > compare two real numbers, two binary integers, or two

strings returning 1 (true) or @ (false) based on the comparison. The

order of the comparison is /evel 2 test level 1, where test is the

comparison function. For example, if 6 is stored in X, % 5 < removes 6

and 5 from the stack and returns @. If one object is an algebraic (or

name) and the other object is an algebraic (or name) or a number, <, >,

<, and > return an expression that must be evaluated to return a test

result. For strings, “less than” means alphabetically previous. For
example, "AAA" is less than "ARAB".

26: Tests and Conditional Structures 491

= = takes two objects from the stack and:

= If either object is not an algebraic or a name, returns 1 if the two

objects are the same type and have the same value, or @ otherwise.

Lists and programs are considered to have the same value if the

objects they contain are identical.

= If one object is an algebraic (or name) and the other object is an

algebraic (or name) or a number, returns an expression that must be

evaluated to return a test result.

(Note that = = is used for comparisons, while = separates two sides of an

equation.)

+ works just like = =, except that the test results are opposite.

SAME returns 1 (true) if two objects identical. For example, '+3' 4

SAME returns @ regardless of the value of X because the algebraic

'243' is not identical to the real number 4. For all object types other

than algebraics and names, SAME works just like = =.

Using Comparison Functions in Algebraics. Comparison

functions (except SAME) can be used in algebraics as infix functions. For

example, if 6 is stored in X, 'X<5' >NUM returns G.

492 26: Tests and Conditional Structures

Logical Functions

Logical functions return a test result based on the outcomes of two
previously executed tests. Note that these four functions interpret any
non-zero argument as a true result.

Logical Functions

Keys | Programmable Description
Command

Returns 1 (true) if both arguments are
| true.

| Returns 1 (true) if either or both
| arguments are true.

Returns 1 (true) if either, but not both,
arguments are true.

Returns 1 (true) ifthe argqumentis
| (false); otherwise, returns 4G (false). |

AND, OR, and XOR are used to combine two test results. For example, if
4isstoredin Y, Y 3 < 5S AND returns 1. First, Y 8 < returns 1 to
the stack. AND removes 1 and 5 from the stack, interpreting both as
true results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is stored
in.X and 2isstoredin Y, X Y < NOT returns G.

Using Logical Functions in Algebraics. AND, OR, and XOR can
be used as infix functions in algebraics. For example, '3¢5 XOR 4>7'
>MUM returns 1.

NOT can be used as a prefix function in algebraics. For example, 'HOT
2£4' NUM returns @ if Z = 2,

26: Tests and Conditional Structures 493

Testing Object Types

argument and returns the number that identifies that object type. The

table on page 97 in ghapter 4 lists the HP 48 objects and their

corresponding type number.

Conditional Structures

The HP 48 conditional structures let a program make a decision based on

the result of a test or tests. Conditional structures are built with

commands that work only when used in proper combination with each

other. These commands are contained in the PRG BRCH menu ((PRG]

“BRCH).

The conditional structures are:

a IF...THEN...END.

» IF...THEN...ELSE...END.

mw CASE...END.

The IF... .THEN...END Structure

IF. ..THEN...END executes a sequence of commands only if a test
evaluates to true. The syntax is:

IF test-clause THEH true-clause EHD

The test-clause can be a command sequence (for example, AH E& £) or an

algebraic (for example, 'AE'). If the test-clause is an algebraic, it is

automatically evaluated to a number (~NUM or EVAL isn’t necessary).

As a typing aid, press (4) IF to key in:

Le

THEH ©

END

494 26: Tests and Conditional Structures

Example 1: IF...THEN...END. Both programs below test the value
in level 1. If the value is positive it is made negative. The first program
uses a command sequence as the test-clause:

* DUP IF @ > THEN NEG END »*

The value on the stack must be duplicated because the > command
removes two arguments from the stack (the copy of the value made by
DUP, and 0).

The next version uses an algebraic as the test clause:

* > x * IF 'x>@' THEN x NEG END » *&

Example 2: IF... THEN...END. This program multiplies two
numbers together if both are non-zero.

Program: Comments:

&

* x Y Creates local variables x and y
containing the two numbers from the
stack.

&

IF Starts the test-clause.

'x#G ! Tests one of the numbers and leaves

a test result on the stack.

'yeG! Tests the other number, leaving
another test result on the stack.

AND Tests whether both tests were true.

THEN Ends the test-clause, starts the true-
clause.

x Y ¥ If AND returns true, multiplies the
two numbers together.

26: Tests and Conditional Structures 495

EHD Ends the true-clause.

ae

=

The following program accomplishes the same task as the previous

program:

* +x y ¢ IF 'x AND uy' THEM «x uy * EHD % @

The test-clause 'x AHL w' returns “true” if both numbers are non-

Zero.

How IF...THEN...END Works. IF begins the test-clause, which
leaves a test result on the stack. THEN removes the test result from the

stack. If the value is non-zero, the true-clause is executed. Otherwise,

program execution resumes following END.

The IF... THEN. ..ELSE...END Structure

IF...THEN...ELSE...END executes one sequence of commands if a test

is true, and another sequence of commands if that test is false. The syntax

IS:

IF test-clause THEH true-clause ELSE false-clause EHD

If the test-clause is an algebraic, it is automatically evaluated to a number
(-NUM or EVAL isn’t necessary).

IF

THEH

ELSE

EMC

496 26: Tests and Conditional Structures

Example 1: IF...THEN...ELSE. ..END. The following program
takes a value x from the stack and calculates sin x/x. Atx = 0 the division
would error, so the program returns the limit value 1 in this case:

« * x « IF ‘x#@' THEN x SIN x “ ELSE 1 END ® #

Example 2: IF. ..THEN...ELSE...END. This program, like example
2 for IF... THEN...END, multiplies two numbers together if they are
both non-zero. However, the program returns the string "ZERO" if
either value is 0.

Program: Comments:

«

+ ni ne Stores the values from levels 1 and 2
in local variables.

« Starts the defining procedure for the
local variable structure.

IF Starts the test clause.

'ni#@ AND n2zq' Tests nJ and n2.

THEN If both numbers are non-zero...

ni n2 * ... multiplies the two values.

ELSE If both numbers are not non-zero ...

"ZERO" ... returns the string ZERO.

END Ends the conditional.

% Ends the defining procedure.

&

How IF...THEN...ELSE...END Works. IF begins the test-clause,
which leaves a test result on the stack. THEN removes the test result from
the stack. If the value is non-zero, the true-clause is executed. Otherwise,
the false-clause is executed. After the appropriate clause is executed,
execution resumes following END.

26: Tests and Conditional Structures 497

The CASE. ..END Structure

The CASE...END structure lets you execute a series of cases (tests). The
first test that returns a true result causes execution of the corresponding
true-clause, ending the CASE. ..END structure. Optionally, you can
include after the last test a default clause that is executed if all the tests
evaluate to false.

The CASE...END structure has the syntax:

CASE
test-clause, THEN true-clause, END
test-clause, THEN true-clause, EHD

test-clause, THEN true-clause, EHD
default-clause (optional)

EHD

CASE

THEN
EMD
END

CASE. to key in:

THEN

END

Example: The CASE. ..END Structure. The following program
stores the level 1 argument in a variable if the argument is a string, list, or
program.

498 26: Tests and Conditional Structures

Program: Comments:

€

ey Stores the argument in local variable
y.

« Starts the defining procedure.

CASE Starts the case structure.

y TYPE 2 SAME Case 1: If the argument is a string,
THEN y ‘STR' STO END - stores it in STR.

y TYPE 5 SAME Case 2: If the argument is a list,
THEN y ‘LIST' STO EHD stores it in LIST.

yw TYPE 8 SAME Case 3: If the argument is a program,
THEN y 'PROG' STO EHD stores it in PROG.

END Ends the case structure.

% Ends the defining procedure.

>

How CASE. ..END Works. When CASE is executed, test-clause, is
evaluated. If the test is true, true-clause, is executed, and execution skips
to END. If test-clause, is false, execution proceeds to test-clause.
Execution within the CASE structure continues until a true-clause is
executed, or until all the test-clauses evaluate to false. Optionally, a
default clause can be included. In this case, the default-clause is executed
if all the test-clauses evaluate to false.

Conditional Commands

The IF...THEN...END and IF...THEN...ELSE structures are useful for
situations where the true-clause and false-clause are sequences of
commands and objects. Two commands, IFT (If...Then) and IFTE
(If...Then...Else), let you easily execute the same decision-making
process if the true- and false-clauses are each a single command or object.

26: Tests and Conditional Structures 499

The IFT (if-Then-End) Command

The IFT command takes two arguments: a test result in level 2 and an
object in level 1 (the “true clause”). The object in level 1 is executed if the
test result is true.

Example: The IFT Command. The following program removes a
number from the stack and displays POSITIVE if the number is positive.

€ @ > "POSITIVE" IFT *

The IFTE Function

The IFTE function takes three arguments: a test result in level 3, and
objects in levels 2 and 1. The level-2 object (the “true-clause”) is executed
if the test result is true. Otherwise, the level-1 object (the “false-clause”)
is executed.

Example: The IFTE Command. This program takes a value from
level 1 and displays POSITIVE if it is positive or zero, and NEGATIVE
otherwise:

€ 6 = "POSITIVE" "NEGATIVE" IFTE #

Using IFTE in Algebraics. The IFTE function can also be used as a
function in algebraics. It has the syntax:

IF TE<test, true-clause , false-clause>

Example: The IFTE Function. This program is a user-defined
function that takes a number (x) from the stack and calculates sin(x) /x if x
is non-zero. If x is 0, the program returns 1:

& > x 'IFTECK#B@,SINGxo4x,s 1)! &

500 26: Tests and Conditional Structures

27

Loop Structures

Loop structures execute a part of a program repeatedly. There are two
fundamental types of loops:

= For a definite loop, the program specifies in advance how many times
the loop clause will be executed.

u In an indefinite loop, the program uses a test to determine whether to
execute the loop-clause again.

Like the conditional structures described in chapter 26, looping structures
are built with commands that work only when used in proper combination
with each other. These commands are contained in the PRG BRCH menu

((PRG] BRCH).

Definite Loop Structures

There are two definite loop structures. Each has two variations:

= START...NEXT and START. ..STEP.

mw FOR...NEXT and FOR.. STEP.

27: Loop Structures 501

The START...NEXT Structure

START. ..NEXT executes a portion of a program a specified number of
times. The syntax is: .

Start finish START loop-clause NEXT

As a typing aid, press (4)S TART to key in:

START
NEXT

Example: A START. ..NEXT Loop. The following program creates a
list containing ten copies of the string "ABC":

* 1 16 START “ABC" NEAT 16 3LIST @

How START. ..NEXT Works. START takes two numbers (Start and
finish) from the stack and stores them as the starting and ending values
for a loop counter. Then, the loop-clause is executed. NEXT increments
the counter by 1 and tests to see if its value is less than or equal to finish.
If so, the loop-clause is executed again.

502 $27: Loop Structures

Syntax Flowchart

Start 1: start

finish 2: finish

counter=start
Store finish

loop-clause Body of loop

START

counter=

counter+1 yes

NEXT

Notice that the loop-clause is always executed at least once.

27: Loop Structures 503

The START. ..STEP Structure

START. ..STEP works just like START. ..NEXT, except that it lets you
specify an increment value other than 1. The syntax is:

start finish START loop-clause increment STEP

START

STEP

Example: A START. ..STEP Loop. The following program takes a
number x from the stack and calculates the square of that number x/3
times:

« DUP + x « x 1 START x SQ -3 STEP *

How START. ..STEP Works. START takes two numbers (Sfart and
finish) from the stack and stores them as the starting and ending values of
the loop counter. Then, the loop-clause is executed. STEP takes the
increment value from the stack and increments the counter by that value.
If the argument of STEP is an algebraic or a name, it is automatically
evaluated to a number.

The increment value can be positive or negative. If it is positive, the loop
is executed again when the counter is less than or equal to final. If the
increment value is negative, the loop is executed when the counter is
greater than or equal to final. In the following flowchart, the increment
value is positive.

504 +$®%$jq1q4Z7: Loop Structures

Syntax Flowchart

start
ae 1: Start

posh 2: finish

START counter=start

Store finish

-claus
oP cauee Body of loop

increment A,
1: _— yes

increment

STEP

Is

counter <

finish?

27: Loop Structures 505

The FOR. ..NEXT Structure

A FOR...NEXT loop executes a program segment a specified number of
times using a local variable as the loop counter. You can use this variable
within the loop. The syntax is:

start finish FOR counter loop-clause HEXT

FOF:

HEAT

Example 1: A FOR. ..NEXT Loop. The following program places the
squares of the integers 1 through 5 on the stack:

Syl tl FOR j j 5 NEXT #

Example 2: A FOR. ..NEXT Loop. The following program takes the
value x from the stack and computes the integer powers i of x. For
example, when x = 12 and start and finish are 3 and 5 respectively, the
program returns 12°, 12+, and 12°. It requires as inputs start and finish in
levels 3 and 2, and x in level 1:

& +x «© FOR n 'x*n' EVAL HEAT *

+ x removes x from the stack, leaving start and finish there as arguments

for FOR.

How FOR. ..NEXT Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Then, the loop-clause is
executed; counter can appear within the loop clause. NEXT increments
counter by one, and then tests whether counter is less than or equal to
finish. If so, the loop-clause is repeated (with the new value of counter).

When the loop is exited, counter is purged.

506 27: Loop Structures

Syntax Flowchart

start 1: start

finish 2: finish

counter=start

loop-clause Body of loop

counter= yes

counter +1

NEXT Y

Is
counter <

finish?

27: Loop Structures 507

The FOR...STEP Structure

FOR. ..STEP works just like FOR...NEXT, except that it lets you specify
an increment value other than 1. The syntax 1s:

start finish FOR counter loop-clause increment STEP

FOR
Sir

Example 1: A FOR...STEP Loop. The following program places the
squares of the integers 1, 3, 5, 7, and 9 on the stack:

#19 FOR x x S@ 2 STEF »

Example 2: A FOR. ..STEP Loop. The following program takes n
from the stack, and returns the series of numbers 1, 2, 4, 8, 16, ...2. Ifn
isn’t in the series, the program stops at the last value less than n:

* 1 SWAP FOR nm m STEP *

How FOR. ..STEP Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Next, the loop-clause is executed;
counter can appear within the loop clause. STEP takes the increment
value from the stack and increments counter by that value.

The increment value can be positive or negative. If the increment is
positive, the loop is executed again when counter is less than or equal to
final. If the increment is negative, the loop is executed when counter is
greater than or equal to final.

When the loop is exited, counter is purged.

(In the following flowchart, the increment value is positive.)

508 $27: Loop Structures

Syntax Flowchart

start 1: start

finish 2: finish

counter=start

Store finish
FOR

loop-clause Body of loop

increment 1: increment yes

counter=counter+

increment

STEP

27: Loop Structures 509

Indefinite Loop Structures

The DO...UNTIL...END Structure

DO...UNTIL...END... executes a loop repeatedly until a test returns a
true (non-zero) result. Since the test-clause is executed after the loop-
clause, the loop is always executed at least once. The syntax is:

DO loop-clause UNTIL test-clause END

As a typing aid, press [4] 06 to key in:

DO

UNTIL
END

Example: A DO...UNTIL...END Loop. The following program
calculates nm + 2n + 3n + ... for a value of n. The program stops when the
sum exceeds 1000, and returns the sum and the coefficient of 7.

Program: Comments:

&

DUP 1 e#nmese fl Duplicates n and stores the value
into n and 5s; initializes counter c to 1.

« Starts the defining procedure, in this
case a program, for the local variable
structure.

DO Starts the loop-clause.

'c' INCR Increments the counter by 1. (INCR
is discussed on page 513.)

nm * 's' STO+ Calculates c x n, and adds the
product tos.

510 27: Loop Structures

UNTIL Starts the test clause.

s 1640 > Repeats loop until s > 1000.

END Ends the test-clause.

sc Puts s and c on the stack.

% Ends the defining procedure.

e

How DO...UNTIL...END Works. DO starts execution of the loop-

clause. UNTIL ends the loop clause and begins the test-clause. The test-

clause leaves a test result on the stack. END removes the test result from

the stack. If its value is zero, the loop-clause is executed again; otherwise,

execution resumes following END.

Syntax Flowchart

DO

loop-clause Body of loop f

UNTIL

test-clause no

1: test result

Is “™

END test result
non-zero?

27: Loop Structures 511

The WHILE. ..REPEAT...END Structure

WHILE. ..REPEAT...END repeatedly evaluates a test and executes a
loop-clause if the test is true. Since the test-clause occurs before the
loop-clause, the loop-clause is never executed if the test is initially false.
The syntax is:

WHILE test-clause REPEAT loop-clause END

As a typing aid, press [Q]HHILE to key in:

WHILE
REPEAT
END

Example 1: A WHILE. ..REPEAT...END Loop. The following
program starts with a number on the stack, and repeatedly performs a
division by 2 as long as the result is evenly divisible. For example, starting
with the number 24, the program computes 12, then 6, then 3:

& WHILE DUP 2 HOD @ == REPEAT 2 / DUP EHD DROP »

Example 2: A WHILE. ..REPEAT. ..END Loop. The following
program takes any number of vectors or arrays from the stack and adds
them to the statistics matrix. (The vectors and arrays must have the same
number of columns.) WHILE. ..REPEAT...END is used instead of
DO...UNTIL...END because the test must be done before the addition. -
(If only vectors or arrays with the same number of columns are on the
stack, the program errors after the last vector or array is added to the
statistics matrix.)

* WHILE DURF TYPE 3 == REPEAT E+ EHD

How WHILE. ..REPEAT...END Works. The test-clause is executed

and returns a test result to the stack. REPEAT takes the value from the

stack. If the value is non-zero, execution continues with the loop-clause;
otherwise, execution resumes following END.

512 27: Loop Structures

Syntax Flowchart

WHILE

test-clause

1: test result

REPEAT

loop-clause Body of loop

END

Loop Counters (INCR and DECR)

The INCR (increment) command ((p>J[(MEMORY) {NER)takes a global
or local variable name as its argument. The variable must contain a real
number. The command:

w Returns the new value of the variable.

= Increments by 1 the value stored in the variable.

For example, if c contains the value 5, 'c' INCR returns 6 to the stack
and stores 6 in c.

The DECR (decrement) command is analogous to INCR, except that it
subtracts 1 from the specified variable.

27: Loop Structures 513

Example: Using a Loop Counter with an Indefinite Loop. The
following program takes a maximum of five vectors from the stack and
adds them to the current statistics matrix.

Program:

&

a a

WHILE

DUP TYFE a

‘c' INCR

AHD

REPERT

Lt

EMD

514 27: Loop Structures

Comments:

Stores 0 in local variable c.

Starts the defining procedure for the
local variable structure.

Starts the test clause.

Returns true if level 1 contains a

vector.

Increments the value in c and puts
the incremented value in level 1.

Returns true if the incremented

value of c <5.

Returns true if the two previous test
results are true.

Adds the vector to DAT.

Ends the WHILE. ..REPEAT

structure.

Ends the defining procedure.

28

Flags

aii = ‘ ebes

Flags are an important programming tool in the HP 48. You can think of
a flag as a switch that is either on (set) or off (clear). A program can test a
flap’s state within a conditional or looping structure (described in the
previous chapters) to make a decision. Since flags have unique meanings
for the calculator, flag tests expand a program’s decision-making
capabilities beyond that available with comparison and logical functions.

Flag Types

There are two types of flags in the HP 48: systern flags, numbered -1
through — 64; and user flags, numbered 1 through 64. System flags have a
predefined meaning for the calculator. For example, system flag — 40
controls the clock display — when this flag is clear (the default state), the
clock is displayed only when the TIME menu is selected; when this flag i

in the MODES menu, you set or clear flag — 40.) Appendix E lists the!
system flags and their definitions.

28: Flags 515

User flags are not used by any built-in operations; what they mean
depends entirely on how you define them. When you set a user flag 1
through 5, the corresponding annunciator is activated. (Note that plug-in
cards, described in chapter 34, may affect the settings of user-flags
31— 64.)

Setting, Clearing, and Testing Flags

The following commands take as their argument a flag number — an
integer 1 through 64 (for user flags), or — 1 through —64 (for system
flags).

Flag Commands

Command

Jz EST: (page 3) (or (
J ODES! pages 2 and

3): a

| Sets the flag.
Clears the flag.

Returns true (1) if the flag is set, or
false (@) if the flag is clear.

| Returns true (1) if the flag is clear, or
false (@) if the flag is set.

Tests the flag (returns true if the flag is
| set), then clears the flag.

Tests the flag (returns true if the flag is |
| clear), then clears the flag. :

Example: Testing a System Flag. The following program sets an
alarm for June 6, 1991 at 5:05 PM. It first tests the status of system flag
— 42 (the Date Format flag) in a conditional structure and then supplies
the alarm date in the current date format, based on the test result.

516 28: Flags

Program:

£

IF
-42 FC?

THEN
6.151991

ELSE
15.661991

END

i7.85 “TEST COMPLETE"

3 *LIST STOALARM

ra

Comments:

Tests the status of flag — 42, the Date
Format flag.

If flag —42 is clear, supplies the date
in month/day year format.

If flag — 42 is set, supplies the date in
day.month.year format.

Ends the conditional.

Completes the set-alarm command
sequence. (17.5 is the alarm time
and "TEST COMPLETE" is the

alarm message.)

Example: User Flags in Programs. The following program returns
either the fractional or integer part of the level 1 argument, depending on
the state of user flag 10.

Program:

=

IF

l@ FS?

THEH

IP

ELSE

FP

EMD

Comments:

Starts the conditional.

Tests the status of user flag 10.

If flag 10 is set...

... returns the integer part.

If flag 10 is clear ...

... returns the fractional part.

Ends the conditional.

28: Flags 517

Before you execute this program, you set flag 10 if you want to return the
integer part of the argument, or you clear flag 10 if you want to return the
fractional part of the argument. Flag 10 is defined to have a unique
meaning in the program; its status determines which part of the level 1
argument is returned to the stack.

Recalling and Storing the Flag States

The RCLF (recall flag status) and STOF (store flag status) commands let
you recall and then store the status of the HP 48 flags. The commands let
a program that alters the status of a flag or flags during execution
preserve the pre-program-execution flag status.

Recalling the Flag States

RCLF returns a list containing two 64-bit binary integers that represent

the current status of the system flags and user flags respectively:

£ Hn, #n, 3

The rightmost (least significant) bits of #n, and #n, represent the states
of system flag —1 and user flag +1 respectively.

Storing the Flag States

STOF sets the current states of the system flags, or the states of both the
system and user flags. It takes as its argument either:

w A single binary integer (#/,), in which case only the corresponding
system flags are set or cleared.

w A list containing two binary integers ({ #0, #N, 3), in which case
the corresponding system and user flags are set or cleared.

A bit with value 1 sets the corresponding flag; a bit with value 0 clears the
corresponding flag. The rightmost (least significant) bits of #N, and #n,
set the states of system flag —1 and user flag +1 respectively.

The program PRESERVE on page 555 in chapter 31 uses RCLF and
STOF.

518 28: Flags

29

Interactive Programs

Simple programs like those in chapter 25 use data that is supplied before
program execution and return results as unlabeled numbers. Such
programs may be difficult to use, particularly if you are not the program
author. You must know what arguments to enter on the stack and in what
order to enter them, and you must know how to interpret the results
returned to the stack.

Interactive programs do any of the following:

= Stop during execution to prompt you for data.

= Display program results with explanatory messages or tags.

= Stop during execution so that you can make a choice about how you
want the program to proceed.

29: Interactive Programs 519

Suspending Program Execution for Data
Input

Data Input Commands

Programmable Description
Command |

CONT Restarts a halted program.

=f (pages 1, 2 and 3):

1A HALT Halts program execution.

INPUT Suspends program execution for data
; input. Prevents stack operations while

the program is paused. |

PROMPT Halts program execution for data input.

DISP Displays an object in the specified line —
of the display. |

WAIT Suspends program execution for x
seconds, where x is a number from
level 1.

Returns a test result to level 1 and, if a
key is pressed, the location of that key.

Sounds a beep at a specified |
frequency for a specified duration.

Blanks the display.

“Freezes” a specified area of the
display so that it is not updated until a
key press.

520 8 29: Interactive Programs

The PROMPT Command

PROMPT takes a string argument from level 1, displays the string
(without the “ delimiters) in the status area, and halts program
execution. Calculator control is returned to the keyboard. Program
execution is resumed by executing CONT. For example, when you execute
the program segment:

« "ABC?" PROMPT #

the display looks like this:

eRers] Prue | Wie [Mate HEC TRL ENZE

The message is displayed until you press [ENTER] or [ATTN] or until you
update the status area (for example, by pressing (4) [REVIEW)).

The following program, TPROMPT, prompts you for the dimensions of a
torus, then calls program TORSA (chapter 25, page 481) to calculate its
surface area. You don’t have to enter data on the stack prior to program
execution.

Ee
Program: Comments:

&

"ENTER a; b IN ORDER?" Puts the prompting string on the
stack.

29: Interactive Programs 521

PROMPT Displays the string in the status area,
halts program execution, and returns
calculator control to the keyboard.

TORSA Executes TORSA, using the just-
entered stack arguments.

%

() TPROMPT Stores the program in TPROMPT.

Example: Prompting for Data Input in a Program. Execute
TPROMPT to calculate the volume of a torus with inner radius a = 8

inches and outer radius b = 10 inches.

Select the VAR menu and start TPROMPT.

a

TPO JHA] tL

The program prompts you for data. Enter the inner and outer radii. Note
that after you press [ENTER], the prompt message is cleared from the
status area.

8 [ENTER] 10

8

Continue the program.

[4]
CN OE

The answer is returned to level 1 of the stack.

Note that when program execution is suspended by PROMPT, you can
execute calculator operations just as you did before you started the
program. Suppose the outer radius b of the torus in the previous example
is measured as 0.83 feet. You can convert that value to inches while the
program is suspended for data input by pressing .83 12 [x].

522 29: Interactive Programs

The BEEP Command

The BEEP command lets you enhance an interactive program with
audible prompting. BEEP takes two arguments from the stack: the tone
frequency from level 2 and the tone duration from level 1. The following
edited version of TPROMPT sounds a 440-hertz, one-half-second tone at
the prompt for data input.

Program: Comments:

=

"FNTER as 6b IN ORDER: "

446 .5 BEEP Sounds a tone to audibly supplement
the prompt for data input.

PROMPT

TORSA

P

The DISP, HALT and FREEZE Commands

DISP, HALT, and FREEZE can be used together to prompt for data
input:

w DISP displays an object in a specified line of the display. DISP takes
two arguments from the stack: an object from level 2, and a display-
line number 1 through 7 from level 1. To facilitate the display of
messages, DISP displays string objects without the surrounding "
delimiters.

Note that the display created by DISP persists only as long as the
program continues execution. When the program ends, or when it is
suspended by the HALT command, the calculator returns to the
normal stack environment, and the display is automatically updated.

FREEZE “freezes” one or more display areas so they are not
updated until a key press. Argument n in level 1 is the sum of the
value codes for the areas to be frozen. The value codes are: 1 for the
status area; 2 for the stack/command line area; 4 for the menu area.

29: Interactive Programs 523

s HALT suspends program execution at the location of the HALT

command and turns on the HALT annunciator. Calculator control is

returned to the keyboard for normal operations. Program execution is

resumed by executing CONT (or SST).

For example, when you execute the following program:

¢ "QBCaeDEF#GHI" CLLCD 1 DISP 3 FREEZE HALT *

the display looks like this:

ABC
DEF
GHI

PHRTS| PROE | HP [Math [VEC TRL EME |

(The = in the previous program is the calculator’s representation for the

« (newline) character once a program has been entered on the stack.)

The INPUT Command

INPUT is used to prompt for data input when the programmer does not

want the user to have access to stack operations. Consider the following

program:

« "Variable name?" "VARI" INPUT »

When this program is executed, the display looks like:

sUAR: 4

1. The stack area is blanked, and the contents of the string from

level 2, Variable name?, are displayed at the top of the stack

area. The string from level 2 is called the prompt string.

524 29: Interactive Programs

2. The contents of the string from level 1, : VAR:, are displayed in the
command line. The string from level 1 is called the command-line
string. Program-entry mode is activated and the insert cursor is
positioned after the string. The program is now suspended for data
input.

3. Program execution is continued by pressing [ENTER], which returns
the contents of the command line to the stack as a string, called the
result string.

The following program, VSPH, calculates the volume of a sphere. VSPH
first calculates */, x, then prompts for the radius of the sphere and
completes the calculation. Because a partial calculation is already on the
stack, VSPH protects the stack by executing INPUT to prompt for the
radius. INPUT sets Program-entry mode when program execution pauses
for data entry. Subsequent commands are not executed immediately —
instead, they are listed in the command line until the user presses [ENTER].

Program: Comments:

«

4377 * +HUM Starts the calculation.

"Key in radius" Builds the prompt string, displayed
at the top of the stack area.

Builds the command-line string. In
this case, the string is empty, so the
command line will be empty.

IHPUT Displays the stack-area prompt,
positions the cursor at the start of
the command line, and suspends the
program for data input (the radius of
the sphere).

29: interactive Programs 325

OBJ+ Converts the result string into its
component object —- a real number.

cs Cubes the radius and completes the
calculation.

%

{) VSPH Stores the program in VSPH.

Example: Prompting for Data with INPUT. Execute VSPH to
calculate the volume of a sphere of radius 2.5 meters.

Select the VAR menu and start the program.

EE a

To show how INPUT protects the stack, press [)[DROP).

(4) (DROP
{ HOME }

Key in radius

DROP 4
PUSPH TORSA] TPRO[CHO] |

DROP is listed in the command line, but is not executed, so the partial
calculation in level 1 is protected.

Press [ATTN] to restore the command line. Then key in the radius and
continue program execution.

1: 69. 449846949?
2.5 PusPH[TORSHLTPRO CHAN, |

Options for the INPUT Command. In its general form, the level 1
argument for INPUT is a /ist that specifies the content and interpretation
of the command line. The list can contain one or more of the following
parameters, in any order.

= The command-line string, whose contents are placed in the command
line for prompting when the program pauses.

526 29: Interactive Programs

a Either areal number, or a list containing two real numbers, that
specifies the initial cursor position in the command line:

a Areal number vn at the nth character from the left end of the first
row (line) of the command line. A positive n specifies the insert
cursor; a negative n specifies the replace cursor. 0 specifies the
end of the command-line string.

= A list that specifies the initial row and column position of the
cursor: the first number in the list specifies a row in the
command line (1 specifies the first row of the command line); the
second number counts by characters from the left end of the
specified line. 0 specifies the end of the command-line string in
the specified row. A positive row number specifies the insert
cursor; a negative row number specifies the replace cursor.

w One or more of the parameters ALG, a, or V, entered as unquoted

names:

= ALG activates Algebraic/Program-entry mode.

= a ((e) (P>){A)) specifies alpha lock.

w V verifies if the characters in the result string, without the "
delimiters, compose a valid object or objects. If the result-string
characters do not compose a valid object or objects, INPUT
displays the Invalid Syntax warning and prompts again for
data.

The INPUT Default State. You can choose to specify as few as one of
the level 1 list parameters. The default states for these parameters are:

= Blank command line.

= Insert cursor placed at the end of the initial command line string.

ws Program-entry mode.

ws Command-line string not checked for invalid syntax.

If you specify only a command-line string for the level 1 argument, you do
not need to put it in a list. For example, the previous program, VSPH,
specifies an empty command-line string for the level 1 argument.

29: Interactive Programs 527

Building the Command-Line String. After the user inputs data to
the command line and presses to resume program execution, the
contents of the command line are returned to level 1 as the result string.
To process the input, the program may at some point execute OBJ— to
convert the result string to a valid object or objects. The program can
accomplish this by specifying a command-line string of known form and
then taking appropriate action after the result string is returned to level 1:

m The program can specify an empty command-line string. In this case,
the result string consists only of the input. The program VSPH on
page 525 uses this method.

= The program can specify a command-line string whose characters
form the tag and delimiters for a tagged object. (See page 87 for a
discussion of tagged objects.) In this case, the input completes the
tagged object. The program TINPUT on page 529 uses this method.

= The program can specify a command-line string whose characters
form a message. In this case, the program subtracts those characters
from the result string to leave only the input in the string in string
form. The program SSEC on page 531 uses this method.

In the first two cases, the V parameter can also be specified as part of the
level 1 argument to specify that INPUT reprompt for data if the contents
of the result string are not valid objects.

The following program, TINPUT, executes INPUT to prompt for the
inner and outer radii of a torus, then calls TORSA (chapter 25, page 481)
to calculate its surface area. TINPUT prompts for @ and b in a two-row
command line; the level 1 argument for INPUT is list that contains:

= The command-line string.

= An imbedded list specifying the initial cursor position.

w The V parameter to check for invalid syntax in the result string.

The command-line string forms the tags and delimiters for two tagged
objects. The list does not specify the entry mode, so Program-entry mode
is selected by default.

528 29: Interactive Programs

Program:

&

"Key in as 6b"

{

“targibs" {1 @3 ¥

INPUT

OBJ>

EC
Comments:

Builds the level 2 string, displayed at
the top of the stack area.

Starts the level 1 list argument.

The level 1 list contains a command-
line string, a list, and the verify-
syntax specification. (To key in the

string, press (r>)(*_*) (>)£_:) a &)
(r>)(—) (JC) b. After you press

to put the finished program
on the stack, the string will be shown
on one line, with the = character
indicating the newline character.)
The imbedded list positions the
insert cursor in row 1 just after :a:.
V specifies to check for invalid
syntax in the result string.

Ends the level 1 list argument.

Displays the stack string and
command-line string, positions the
cursor as specified by the list in the
level 1 argument, and, by default,
sets Program-entry mode. Then
suspends program execution for
data. Checks the resultant string for
syntax errors.

Converts the string into its
component objects (in this case, two
tagged objects).

29: Interactive Programs 529

TORSA Calls TORSA to calculate the surface

area.

P

(‘) TINPUT Stores the program in TINPUT.

Example: Prompting for Data with Input. Execute TINPUT to
calculate the surface area of a torus of inner radius @ = 10 cm and outer

radius b = 20 cm.

Select the VAR menu and start the program.

Key in the value for a and press [¥) to move the cursor to the next prompt
in the command line. Then key in the value for b.

10 (¥] 20

sant

‘bi 2u¢
TINPUT YEPH [TORSHL TPEO [CHAD] |

Continue program execution.

1: 2968. 88132633
TINPU[SPH (TORSA] TPROJCH.e] |

The following program executes INPUT to prompt for a social security
number, then extracts in string form the first three digits and last four
digits from the result string. The level-1 argument for INPUT specifies:

= A command-line string.

= The replace cursor positioned at the start of the prompt string (-1).
The replace cursor lets the user “fill in” the command line string,
using {&] to skip over the dashes in the social-security number.

w By default, Program-entry mode.
w By default, no verification of object syntax the dashes in the social-

security number are not valid characters outside the string delimiters.

530 29: Interactive Programs

2: " first three digits"
1 "fast four digits"

Program: Comments:

€

"Key in S.S. #" Builds the level 2 string, displayed at
the top of the stack area.

eee aie Gee: Builds the level 1 argument for
INPUT. (Key in 3 spaces between
the first " delimiter and the first -,
two spaces between the two -’s, and
4 spaces between the last — and the
ending " delimiter.)

INPUT Suspends the program for data.

DUP 1 3 SUB Copies the result string, then extracts
SWAP the first three and last four digits in
& 11 SUB string form.

%

(‘) SSEC Stores the program in SSEC.

Labeling Program Output

A descriptive tag or message can make program output more
recognizable.

29: Interactive Programs 531

Using Tagged Objects as Data Output

ase can nlabes a iat result using the mae command. —TAG

aa a name, aan or real number (the tag) pee level 1.

The following program TTAG is identical to TINPUT, except that it tags

the result.

Program: Comments:

&

"Key in as B"

{ “saimsibs" {1 63 ¥ >

INPUT OBJ?

TORSA

‘AREA ' Builds the tag, in this case a name.

3TAG Joins the tag to the object in level 2,
the program result, to create the
tagged object.

2

{} TTAG Stores the program in TZAG.

Example: Using a Tagged Object for Data Output. Execute

TTAG to calculate the area of a torus of inner radius @ = 1.5 and b =

1.85.

Select the VAR menu and start the program. Supply the values for a and b

and continue program execution. The answer is returned as a tagged

object to the stack.

4ITAG. 1: AREA: 11.5721111663
1.5 [¥) 1.85 Tw [TINPU] YH |TORSA] TRO [CHS

ENTER

532 29: Interactive Programs

Using String Commands to Label Data Output

You can use string commands and DISP to label and display an object
that has been returned to level 1 of the stack:

3. Swap the two strings on the stack, then concatenate them (SWAP
+).

4. Display the resultant string (n DISP).

The following program TSTRING is identical to TINPUT, except that it
converts the program result to a string and appends a labeling string to it.

Program:

4

"Key in as Bb"

C "Satwesbi" {1 BF ¥ 3

INPUT OBJ

TORSA

3STR

“Area =

SWAP +

CLLCD 1 DISP 1 FREEZE

a

(] TSTRING

Comments:

Converts the result to a string.

Enters the labeling string.

Swaps the positions of the two
strings on the stack and adds them.

Displays the resultant string, without
its delimiters, in line 1 of the display.

Stores the program in TSTRING.

29: Interactive Programs 533

Example: Labeling Data Output. Execute TSTRING to calculate

the area of the torus in the previous example (@ = 1.5, b = 1.85).

Select the VAR menu and start the program. Supply the values for a and b

and continue program execution. The labeled answer is displayed in the

status area.

1.5 [¥] 1.85
ENTER

—f

3
¢
l

[WEPH |TORSA] TPO

Pausing to Display Data Output

The WAIT command ((PRG] ETRE [NXT
execution for x seconds, where x is a tera nal aambee from level 1.

You can use WAIT with DISP to display messages during program

execution — for example, to display intermediate program results.

WAIT interprets arguments 0 and —1 differently — see “Commands That

Return a Key Location” on page 539.

Using Menus in Programs

Applications menus like the SOLVE and PLOT menus, as well as the

VAR and CST menus, can be activated and used in a program as they are

during normal keyboard operations.

Displaying a Built-in Menu

To display a ileal sgn in a program, execute the MENU command

((PRG) €TRE =fEHU) with the numeric argument that

corresponds to that bile -in menu. The table in Appendix D lists all the

HP 48 menus and their corresponding menu numbers. For example, 25

MENU activates page 1 of the MODES menu. You can specify a particular

page of a menu by supplying the argument in the form xx.yy, where xx is

the menu number, and yy is the page number.

534 129: interactive Programs

The following program activates the third page of the MODES menu and
asks you to set the angle mode.

« 26.03 MENU "Select Angle Mode" PROMPT >

RCLMENU ([r>]{MODES] | ROLM) returns the menu number of
the currently displayed menu.

Custom Menus in Programs

In chapter 15 you learned how to build a custom menu by supplying a list
argument for MENU. In programs, you can construct custom menus to:

= Emulate built-in applications like the HP Solve application.

= Prompt you to make decisions.

Emulating Built-In Applications. The following program, E/Z,
constructs a custom menu to emulate the HP Solve application for
capacitive electrical circuits.

Application of Ohm’s law to this circuit results in the following expression:

E =1Z

where

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the HP Solve application to find solutions. The custom menu
in EJZ assigns a direct solution to the left-shifted menu key for each
variable, and assigns store and recail functionality to the unshifted and
right-shifted keys — the key actions are analogous to the HP Solve
application.

29: Interactive Programs 535

Program:

&

Ba

DEG
-15 SF -16 SF 2 FIA

{

t ie i £ xX ‘RE!

« I Z * DUP
"E" sTAG
CLLCD 1 DISP
1 FREEZE »
* E* + +

£ ae { ¢ ae ie

"I" sTAG
CLLCD 1 DISP
i FREEZE
«1% 3}
{ a ia { ¥ de

"2" STAG
CLLCD 1 DISP
i FREEZE

“2% 3 }

>

MENU

(ENTER) [] ElZ [STO]

536 $29: Interactive Programs

STO *
‘E' STO

STO *

«EE 2 - DUP 'I' STO

STO >

* E I] - DUP '2' STO

Comments:

Sets Degrees mode. Sets flags —15
and —16 to display complex numbers
in polar form. Sets the display mode
to 2 Fix.

Starts the list for the custom menu.

When you press z the object
in level 1 is stored in variable E.
When you press (4) =, the
product of J and Z is calculated,
stored in variable E, and displayed as
a tagged object. When you press

_, the object stored in E is
returned to level 1.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in EZ.

Example: Emulating a Built-in Application. A 10-volt power

supply at phase angle 0° drives an RC circuit. A current of .37 A at phase

angle 68° is measured. What is the impedance of the circuit?

faxes nt ess ces Le

Key in the value for the voltage.

(4)() 10 (@)[4] 0 10<0¢

Store the value for the voltage. Then key in and store the value fo
r the

current. Solve for the impedance.

what is the complex voltage?

[4)() .74 (>)(4) 68

(Pe) Sea 1: (27.83, <-68. 88)
MG cree

Prompting for a Choice. A custom menu can prompt the user to

make a decision during program execution.

The program WGT in this section calculates the weight of an object in

either English or SI units. WGT builds a custom menu that prompts the

user to select the desired unit system. Here is the defining list for the

custom menu:

29: Interactive Programs 5337

{

{ "EHGL"” « "ENTER Mass

in LB" FROMFT

s2.2 % *

£ "SI" « "EHMTER Masse

in KG" PROMPT

9,51 # % &

+

If you store this list in variable LST, program WGT is simply:

Program: Comments:

€

LST MEHU Displays the custom menu stored in
LIST.

a

(ENTER) [‘) WGT [STO] Stores the program in WGT.

The custom menu defined by WGT remains active until you select a new
menu, so you can do as many calculations as you want.

Note that the custom menu defined by WGT (and the custom menu
defined by EIZ) is automatically stored in variable CST, replacing the
previous custom menu — when you press after the program ends,
the menu defined by WGT is displayed.

Example: Using a Custom Menu to Make a Choice. Use WGT
to calculate the weight of an object of mass 12.5 kg.

Select the menu and start the program.

“WOT. ES

Select the SI unit system.

ooke ENTER Mass in KG

538 $29: Interactive Programs

Key in the mass and continue program execution.

12.5 (4) (CONT) 122.63 1s
CE ee ee

Building a Temporary Menu

The TMENU command ([p>][MODES) s
MENU, except that list arguments do not replace the contents of CST and
so leave the current custom menu unchanged. Note that the temporary
menu remains active until a new menu is selected, even after the program
ends. To programmatically restore the previous menu, execute @ MEHU.

The program « LIST TMEHU > is similar to WGT, except that it builds
a temporary menu to prompt for the unit-system choice.

Commands That Return a Key Location

The WAIT Command with Argument 0

If you supply 0 as the argument for WAIT, the command suspends
program execution until a valid keystroke is executed. It then returns the
three-digit location number that defines where the key is on the keyboard
and restarts program execution. (See section “Making User-Key
Assignments” on page 217 in chapter 15.)

(Note that (*), (>), (J, (a)C4l, or [e){c>] do not by themselves
constitute a valid keystroke.)

The WAIT Command with Argument —1

The WAIT command with argument -1 works just like it does with
argument 0, except that the currently specified menu is also displayed.
This lets you build and display a prompting menu while the program is
paused. (Note that a menu built with MENU or TMENU is not normally
displayed until the program ends or is halted with HALT.)

29: Interactive Programs 539

The KEY Command

A program can prompt for a simple “yes-no” decision using the KEY
command in an indefinite loop, and a comparison test. (Indefinite looping
structures are covered in chapter 27. Tests are covered in chapter 26.)
When the loop begins, KEY simply returns a false result (8) to level 1
until a key is pressed. Once a key is pressed, KEY returns the two-digit
location number that defines where the key is on the keyboard and
returns a true result (1) to level 1. For example, when you use KEY in an
indefinite loop and press (ENTER}, KEY returns 51 to level 2 and true
result 1 to level 1.

The following program segment returns 1 to level 1 if [+] is pressed, or @
to level 1 if any other key is pressed:

* ... DO UNTIL KEY END 95 SAME... *

(Note that KEY returns only a two-digit location number RowColumn,
unlike WAIT, which returns a three-digit location number that identifies
shifted and alpha keys. Thus, if you press the (4) key, KEY returns 71,
while WAIT does not interpret (4) itself as a valid keystroke.)

Turning the HP 48 Off from a Program

The OFF command turns the HP 48 off. If executed from a program, the
program will resume when the calculator is turned back on.

540 29: interactive Programs

Error Trapping

When you attempt an invalid operation from the keyboard, the operation
is not executed and an error message is displayed. For example, if you
execute + with a vector and a real number on the stack, the HP 48 returns
the message:

+ Error:

Bad Argument Type

and, assuming that Last Arguments is enabled, returns the arguments to
the stack. In a program, the same thing happens, but program execution is
also aborted. Consider the following program:

« "KEY IN a AHP 6b" "" INPUT OBJ+ + 2

If you execute this program and supply a vector and a real number at the
prompt, the program displays the Bad Argument Type error message
and aborts execution at the + command. To supply new arguments, you
must restart the program. For a short program like the one above, this
method of error recovery presents little problem. However, when
executing a program that performs time consuming calculations, or that
has numerous stops for intermediate data entry, it may be inconvenient to
restart the program at the beginning each time an error occurs.

30: Error Trapping 541

You can enable a program to continue execution after an error has
occurred by building an error trap. You can construct an error trap with
one of the following conditional structures:

m IFERR...THEN...END.

w IFERR...THEN...ELSE...END.

The IFERR command is located on page 3 of the PRG BRCH menu.

The following commands enhance error-trap structures:

Error Trapping Commands

Keys | Programmable Description
Command

ACTRE (page 3):

Executes a user-specified error. The
calculator behaves just as if an
ordinary error has occurred — if the
error is not trapped in an IFFER
structure, DOERR displays a message
and abandons program execution.

Returns the error number, as a binary
integer, of the most recent error.
Returns #6 if the error number was
cleared by ERRO.

Returns the error message (a string)
for the most recent error. Returns
empty string if the error number was
cleared by ERRO.

Clears the last error number, so that a
subsequent execution of ERRN
returns #6. Also clears the last error

message.

542 30: Error Trapping

The IFERR...THEN...END Structure
The syntax of IFERR...THEN...END is

IFERR trap-clause THEN error-clause END

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. The commands in the error-clause are executed
only if an error is generated during execution of the trap-clause.

As a typing aid, press [4] IF ERR to key in:

IFERR

THEN

END

Example: An IFERR...THEN. .-END Structure. Recall the
following program from chapter 27, page 512.

& WHILE DUP TYPE 3 == REPEAT 2+ END @

The program takes any number of vectors or arrays from the stack and
adds them to the statistics matrix. However, the program errors if a vector
or array with a different number of columns is encountered. In addition, if
only vectors or arrays with the same number of columns are on the stack,
the program errors after the last vector or array has been removed from
the stack.

In the following version, the program simply attempts to add the level 1
object to the statistics matrix until an error occurs. At that point, it ,
“sracefully” ends by displaying the message DONE.

30: Error Trapping 543

Program: Comments:

«

IFERR Starts the trap-clause.

WHILE Starts the test-clause of the nested
loop.

i 1 is a true result, so executes the
loop-clause until an error occurs.

REPEAT Starts the loop clause.

ah Adds the vector or array to the
statistics matrix.

END Ends the nested loop.

THEN If an error does occur on execution
of D+...

"DONE" 1 DISP ... displays the message DONE in the
i FREEZE status area.

END Ends the error trap.

%

The IFERR.. .THEN...ELSE...END Structure

The syntax of IFERR...THEN...ELSE...END is:

IFERR trap-clause THEH error-clause ELSE normal-clause EHD

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. If no error occurs, execution Jumps to the
normal-clause at the completion of the trap-clause.

544 30: Error Trapping

As a typing aid, press (>)TF ERR to key in:

IFERR

THEN
ELSE
END

Example: An IFERR...THEN...ELSE...END Structure. The
following program prompts for two numbers, then adds them. If only one
number is supplied, the program displays an error message and prompts
again.

Program: Comments:

«

bo Begins the outer loop.

"KEY IN a AND b" " " Prompts for two numbers.
INPUT OBJ?

UNTIL Starts the test clause

IFERR Starts the error trap.

+ Adds the contents of levels 1 and 2.

THEN If an error occurs...

ERRM 5 DISP ... executes ERRM to display the
2 WAIT Tao Few Arguments error

8 message for two seconds, then leaves
@ (false) on the stack for the outer-
loop END.

ELSE If an error does not occur ...

1 ... leaves 1 (true) on the stack for
the outer-loop END.

END Ends the error trap.

30: Error Trapping 545

END Ends the outer loop. If the error trap
left @ on the stack, this END returns
program execution to the prompt for
numbers. Otherwise, the program
ends,

User-Defined Errors

You may want to generate an error in a program when an error would not
normally occur. For example, you might want an error to occur if the sum
of the two numbers on the stack is greater than 10. You can do this with
the DOERR command. DOERR causes a program to behave exactly as if
a normal error has occurred during execution. The DOERR error can be
trapped in an IFERR structure; if it is not, program execution is
abandoned at the location of the DOERR command. DOERR takes one
argument from the stack, either:

= A string, in which case the string 1s used as the message. (ERRM
returns this string, and ERRN returns #7@4@@h.)

= A real number or binary integer, in which case the corresponding
built-in error message is displayed. (ERRM and ERRN return the
corresponding error message and number, respectively.) 0 DOERR is
equivalent to (ATTN); that is, program execution is aborted and no
message is displayed. (In this case, the values returned by ERRM and
ERRN are unchanged from their previous values.)

The following program aborts execution if there are three objects in the
level 1 list.

cs

OB JS+

IF 3 SANE

THEH “3S OBJECTS IH LIST" COERR
EHD

%

In this program, DOERR abandons program execution. Alternatively, you
can execute DOERR in the trap-clause of an error trap to enable
program execution to continue.

546 30: Error Trapping

31

More Programming Examples

The programs in this chapter demonstrate programming concepts
introduced in the previous chapters. Some new concepts are also
introduced. The programs are intended to both improve your
programming skills and provide supplementary functions for your
calculator.

At the end of each program, the checksum and the program size in bytes
are listed. The checksum is a binary integer that uniquely identifies the
program based on its contents. To verify that you’ve keyed the program in
correctly, execute the BYTES command ([4](MEMORY) BYTES) with
the program name in level 1. The checksum for the program is returned
to level 2, and its size in bytes is returned to level 1. (If you execute
BYTES with the program object in level 1, before storing the program in
its name, you'll get a different byte count returned to level 1.)

31: More Programming Examples 547

Fibonacci Numbers

This section includes three programs -—~ two demonstrate an approach to
the following problem:

Given an integer n, calculate the nth Fibonacci number F.,, , where:

Fyo=0, Fy =1, F, = Fy-1 + Fy -2

= FIB1 is a user-defined function that is defined recursively — its
defining procedure contains its own name. FIB1 is short.

= FIB2 is a user-defined function with a definite loop. It’s longer and
more complicated than FIB1, but it’s faster.

The third program, FIBT, calls both FIBI and FIB2, and calculates the
execution time of each subprogram.

FIB1 (Fibonacci Numbers, Recursive Version)

atone ox ay sl ARM need) ¢ EE
Techniques.

= IFTE (If-Then-Else function). The defining procedure for FIB/
contains the conditional function IFTE, which can take its argument

either from the stack or in algebraic syntax. (FIB2 uses the
conditional structure IF ... THEN ... ELSE ... END.)

ws Recursion. The defining procedure for F/B] is written in terms of
FIB1, just as F, is defined in terms of F,, -; and F ,, ->.

348 31: More Programming Examples

Program: Comments:

«

on Defines local variable n.

Begins the defining procedure, an
algebraic expression.

IFTECn41; Ifn<1...

Ms ...thenF, =n...

FIBi¢n-1>+FIBiCn-2)) ...else F, = F,-, + F, -2.

Ends the defining procedure.

%

(] FIB1 Enters the program, then stores it in
FIB1.

Checksum: # 41467d

Bytes: 113.5

Example. Calculate F;. Calculate Fi) using algebraic syntax.

First calculate Fs.

a: =

31: More Programming Examples 549

FIB2 (Fibonacci Numbers, Loop Version)

Techniques.

w IF...THEN...ELSE...END. FIB2 uses the program-structure form
of the conditional. (FIB1 uses IFTE.)

mw START... .NEXT (definite loop). To calculate F,,, FJB2 starts with Fy
and F, and repeats a loop to calculate successive F;’s.

Program: Comments:

€

+n Creates a local variable.

€ Begins the defining procedure, a
program.

IF n 1 <£ Ifn<1...

THEN n ...then F, = 7.

ELSE Begins the ELSE clause.

B81 Puts Fy and F, on the stack.

2n From 2 ton...

START ... does the following loop:

DUP Makes a copy of the latest F (initially
F)).

ROT Moves the previous F (initially F,) to
level 1.

+ Calculates the next F (initially F).

550 $31: More Programming Examples

NEXT Repeats the loop.

SWAP DROP Drops F, -1-

END Ends the ELSE clause.

% Ends the defining procedure.

% Ends the program.

(] FIB2 Enters the program, then stores it in
FIB2.

Checksum: # 51820d
Bytes: 89

Example. Calculate F; and Fj. Note that FJB2 is faster than FIB1/.

a: 8

Calculate Fs.

FIBT (Comparing Program-Execution Time)

FIB1 calculates intermediate values F; more than once, while FIB2
calculates each intermediate F; only once. Consequently, FIB2 is faster.
The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with n, while the time required for
FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIB1 calculating Fp.
Note the number of intermediate calculations: 1 in the first row, 2 in the
second row, 4 in the third row, and 8 in the fourth row.

31: More Programming Examples 55f

sue i"

_e ‘, a “.

J \ yg \ y \ Jy \

FIBT executes the TICKS command to record the execution time of FJB1

and FIB2 for a given value of n.

3: F,,

2: FIB1 execution time:z

i: FIB2 execution time: z

Techniques.

w Structured programming. FIBT calls both FIBIJ and FIB2.

= Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

m Interactive programming. FIBT tags each execution time with a
descriptive message.

Program: Comments:

€

DUP TICKS SWAP FIBI Copies n, then executes FIB1,
SWAP TICKS SWAP recording the start and stop time.

- BeR 8192 - Calculates the elapsed time, converts
it to a real number, and converts that
number to seconds, Leaves the

552 31: More Programming Examples

answer returned by FIB1/ in level 2.

"FIBI TIME" Tags the execution time.
+TAG

ROT TICKS SWAP FIB2 Executes FIB2, recording the start
TICKS and stop time.

SWAP DROP SWAP Drops the answer returned by FIB2
- BeR 8192 “ (FIB1 returned the same answer).

Calculates the elapsed time for FIB2
and converts to seconds.

"FIB2 TIME" Tags the execution time.
+TAG

%

() FIBT Stores the program in FIBT.

Checksum: # 22248d
Bytes: 135

Example. Calculate F,; and compare the execution time for the two
methods.

Select the VAR menu and do the calculation.

OME CH.30 }

coo
FIB1 TIME: 33.8876..
FIB2 TIME:
LeeBroli3lc

FeWI=P] FIEI | Flee | FleT | PHO

Fj; is 233. FIB2 takes 0.13 seconds to execute. FIB1 takes 33.9 seconds.
(Your results may differ depending on the contents of memory in your
calculator.)

{

3
C
1

31: More Programming Examples 553

Displaying a Binary Integer |

This section contains three programs:

a PAD is a utility program that converts an object to a string for right-
justified display.

uw PRESERVE is a utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

a BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.
It calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string and, if the string contains fewer than 23
characters, adds spaces to the beginning.

When a short string is displayed with DISP, it appears /eft-justified; its first
character appears at the left end of the display. The position of the last
character is determined by the length of the string. By adding spaces to
the beginning of a short string, PAD moves the position of the last
character to the right. When the string (including leading spaces) is 23
characters long, it appears right-justified; its last character appears at the
right end of the display. PAD has no effect on strings that are longer than
22 characters.

Techniques.

m WHILE... REPEAT... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit

(if false).

= String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two

strings.

554 31: More Programming Examples

Program: Comments:

=

+STR Makes sure the object is in string
form. (Strings are unaffected by this
command.)

WHILE Begins WHILE clause.

DUP SIZE 22 < Does the string contain fewer than
23 characters?

REPEAT Begins REPEAT clause.

" " SHAP + Adds a leading space.

END Ends REPEAT clause.

>

(‘) PAD Enters the program, then stores it in
PAD.

Checksum: # 38912d
Bytes: 61.5

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, PRESERVE stores the current calculator
(flag) status, executes the program, and then restores the previous status.

31: More Programming Examples 555

Techniques.

= RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the

current status of the calculator in a binary integer and STOF (store

flags) to restore the status from that binary integer.

= Local-variable structure. PRESERVE creates a local variable

structure to remove the binary integer from the stack briefly; its

defining procedure simply evaluates the program argument, then puts

the binary integer back on the stack and executes STOF.

Program: Comments:

&

RCLF Recalls the list of two 64-bit binary
integers representing the status of
the 64 system flags and 64 user flags.

+f Stores the list in local variable f.

« Begins the defining procedure.

EVAL Executes the program placed on the
stack as the level 1 argument.

f STOF Puts the list back on the stack, then

restores the status of all flags.

% Ends the defining procedure.

*

(') PRESERVE Enters the program, then stores it in

PRESERVE.

Checksum: # 21528d
Bytes: 46.5

PRESERVE is demonstrated in the program BDISP.

556 31: More Programming Examples

BDISP (Binary Display)

BDISP displays a (real or binary) number in HEX, DEC, OCT, and BIN
bases.

arama

Techniques.

=» IFERR... THEN... END (error trap). To accommodate real-
number arguments, BDISP includes the command R—-B (real-to-
binary). However, this command causes an error if the argument is
already a binary integer. To maintain execution if an error occurs, the
R—B command is placed inside an IFERR clause. No action is
required when an error occurs (since a binary number is an
acceptable argument), so the THEN clause contains no commands.

Enabling LASTARG. In case an error occurs, LASTARG must be
enabled to return the argument (the binary number) to the stack.
BDISP clears flag —55 to enable the LASTARG recovery feature.

=» FOR... NEXT loop (definite loop with counter). BDISP executes a
loop from 1 to 4, each time displaying 2 (the number) in a different
base on a different line. The loop counter (named j in this program) is
a local variable. It is created by the FOR ... NEXT program structure
(rather than by a + command) and it is automatically incremented by
NEXT.

= Unnamed programs as arguments. A program defined only by its «
and » delimiters (not stored in a variable) is not automatically
evaluated; it is simply placed on the stack and may be used as an
argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments.

1. BDISP contains a main program argument and a call to
PRESERVE, This program argument goes on the stack and is
executed by PRESERVE,

31: More Programming Examples 557

2. There are four program arguments that “customize” the action
of the loop. Each program argument contains a command to
change the binary base, and each iteration of the loop evaluates
one of these arguments.

When BDISP creates a local variable for n, the defining procedure is
an unnamed program. However, since this program is a defining
procedure for a local variable structure, it is automatically executed.

Required Programs.

u PAD (page 555) expands a string to 23 characters so that DISP shows
it right-justified.

= PRESERVE (page 556) stores the current status, executes the main
nested program and restores the status.

Program: Comments:

«

« Begins the main nested program.

DUP Makes a copy of n.

-55 CF Clears flag -55 to enable
LASTARG.

IFERR Begins error trap.

R+B Converts to a binary integer.

THEN If an error occurred...

END ... do nothing (there are no
commands in the THEN clause).

aon Creates a local variable n.

& Begins the defining program for the
local variable structure.

CLLCD Clears the display.

« BIH »* Writes the nested program for BIN.

558 $31: More Programming Examples

« OCT *

« DEC

« HEX *

1 4

FOR J

EVAL

mn 3*STR

PAD

j DISP

NEAT

%

3 FREEZE

>

PRESERVE

2

(] BDISP

Checksum:
Bytes:

18055d
191

Writes the nested program for OCT.

Writes the nested program for DEC.

Writes the nested program for HEX.

Sets the first and last counter values.

Starts the loop with counter j.

Executes one of the nested base

programs (initially the one for

Makes a string showing 7 in the
current base.

Pads the string to 23 characters.

Displays the string in the jth line.

Increments j and repeats the loop.

Ends the defining procedure.

Freezes the status and stack areas.

Ends the main nested program.

Stores the current status, executes
the main nested program, and
restores the status.

Enters the program, then stores it in
BDISP.

31: More Programming Examples 559

Example. Switch to DEC base, display # 100 in all bases, and check that

BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the current

base is DEC and enter # 100.

[r>} (CLA)
‘BASE,

Although the main nested program left the calculator in BIN base,

PRESERVE restored DEC base.

To check that BDISP also works for real numbers, try 144.

Median of Statistics Data

This section contains three programs:

= SORT orders the elements of a list.

= LMED calculates the median of a sorted list.

= MEDIAN uses SORT and LMED to calculate the median of the

current statistics data.

560 31: More Programming Examples

SORT (Sort a List)

SORT sorts a list of real numbers into ascending order.

1: ¢ list > i: £ sorted list 3

Techniques.

m Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest number to the last position in list, then again to move the next
largest to the next-to-last position, and so on.

w Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the
stopping position each time the process is done.

= Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining procedure (a program) of
the first. This nesting is done for convenience; it’s easier to create the
first local variable as soon as its value is computed, thereby removing
its value from the stack, rather than computing both values and
creating both local variables at once.

= FOR ...STEP and FOR ... NEXT (definite loops). SORT uses two
counters: - 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each
iteration.

31: More Programming Examples 561

Program:

&

DUP SIZE i - 1

FOR Jj

FOR k

k GETI + nil

GETI + ne

CROP

IF ni n2 >

THEH

k m2 PUTI

ni PUT

EHD

Comments:

From the next-to-last position to the
first position ...

... begins the outer loop with
counter j.

From the first position to the jth
position ...

... begins the inner loop with
counter k.

Gets the kth number in the list and
stores it in a local variable 7.

Begins the defining procedure (a
program) for the outer local variable
structure.

Gets the next number in the list and

stores it in a local variable np.

Begins the defining procedure (a
program) for the inner local variable
structure.

Drops the index returned by GETI.

If the two numbers are in the wrong
order...

... then does the following:

... puts the second one back in the
kth position;

... puts the kth one back in the next

position.

Ends THEN clause.

562 31: More Programming Examples

% Ends inner defining procedure.

% Ends outer defining procedure.

HEXT Increments k and repeats the inner
loop.

-1 STEP Decrements j and repeats the outer
loop.

(ENTER) [') SORT (S Enters the program, then stores it in
SORT.

Checksum: # 1501ld
Bytes: 144

Example. Sort the list {83125 }.

Select the VAR menu, key in the list, and execute SORT.

Le aur 2

[)[< 3) 8 3 PeQRT [LMEG [MEvIH|COLIN [MU
1 2 5 (ENTER
‘SORT.

_LMED (Median of a List)

Given a sorted list, LMED returns the median. If the list contains an odd
number of elements, the median is the value of the center element. If the
list contains an even number of elements, the median is the average value
of the elements just above and below the center.

i: £ sorted list 3 1: median of sorted list

31: More Programming Examples 563

Techniques.

ws FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a noninteger, FLOOR and CEIL return successive
integers that bracket the non- integer.

Program:

€

DUP SIZE

Lt 27

DUP

p FLOOR GET

SWAP

p CEIL GET

+ 2er

>

>

(] LMED

Comments:

Copies the list, then finds its size.

Calculates the center position in the
list (fractional for even-sized lists).

Stores the center position in local
variable p.

Begins the defining procedure (a
program) for the local variable
structure.

Makes a copy of the list.

Gets the number at or below the

center position.

Moves the list to level 1.

Gets the number at or above the

center position.

Calculates the average of the two
numbers at or near the center
position.

Ends the defining procedure.

Enters the program, then stores it in
LMED.,

564 31: More Programming Examples

Checksum: # 3682d
Bytes: 77

Example. Calculate the median of the list you sorted using SORT.

Put the list on the stack if necessary, select the VAR menu, and execute
LMED.

ICH 1295 6 ENTER) 1: Bees a0 So eT

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector representing the medians of the columns of the
statistics data.

Techniques.

w Arrays, lists, and stack elements. MEDIAN extracts a column of data

from SDAT in vector form. To convert the vector to a list, MEDIAN
puts the vector elements on the stack and then combines them into a
list. From this list the median is calculated using SORT and LMED.

The median for the mth column is calculated first, and the median for
the first column is calculated last, so as each median 1s calculated, it is
moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,
theyre combined into a vector.

=m FOR...NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are
calculated in reverse order (last column first), the counter is used to
reverse the order of the medians.

31: More Programming Examples 565

Required Programs.

w SORT (page 562) arranges a list in ascending order.

ws LMED (page 564) calculates the median of a sorted list.

Program: Comments:

&

RCLE Puts a copy of the current statistics
matrix DDAT on the stack for
safekeeping.

DUP SIZE Puts the list { 2 m } on the stack,
where 7 is the number of rows in
“DAT and m is the number of

columns.

OBJ+ DROP Puts nm and m on the stack. Drops the
list size.

+nm Creates local variables for n and m.

€ Begins the defining procedure (a
program) for the local variable
structure.

'ZDAT' TRN Transposes EDAT. Now n is the
number of columns in ZDAT and m
is the number of rows. (To key in the
= character, press (r>)[E), then delete
the parentheses.)

1m Specifies the first and last rows.

FOR j For each row, does the following:

a” Extracts the last row in DDAT.
Initially this is the mth row, which
corresponds to the mth column in
the original DDAT. (To key in the 2—-
command, press (] (STAT)
(4) =)

566 31: More Programming Examples

OBJ>+ DROP

n #LIsT

SORT

LMED

Jj ROLLD

NEAT

m FARRY

SWAP

STO

Pe

[] MEDIAN

Checksum: # 19502d

Bytes: 129.5

Puts the row elements on the stack.
Drops the index list { 7 }, since 7 is
already stored in a local variable.

Makes an n-element list.

Sorts the list.

Calculates the median of the list.

Moves the median to the proper
stack level.

Increments j and repeats the loop.

Combines all the medians into an

m-element vector.

Ends the defining procedure.

Moves the original SDAT to level 1.

Restores LDAT to its previous value.

Enters the program, then stores it in
MEDIAN.

Example. Calculate the median of the following data.

18 12

7

o> 2

11 1

31 48

20 17

There are two columns of data, so MEDIAN will return a two-element
vector.

31: More Programming Examples 567

Enter the matrix.

(>) MATRIX}
18 (ENTER) 12 [ENTER] [¥]
4 (ENTER) 7 (ENTER)
3 [ENTER] 2 [ENTER]
11 (ENTER) 1 (ENTER)
31 (ENTER) 48 [ENTER]
20 JENTER} 17 [ENTER

ENTER

Store the matrix in SDAT.

Calculate the median.

MEDIA

I: [[18_l2
Ct?]
C32]
Cl
LHEOIHMERIAC OLIN [MULTI Esco |

Be a CS

1: [14.5 9.5]
Gs Ea sd ES

The medians are 14.5 for the first column and 9.5 for the second column.

Expanding and Collecting Completely

This section contains two programs:

= MULTI repeats a program until the program has no effect on its

argument.

= EXCO calls MULTI to completely expand and collect an algebraic.

568 $31: More Programming Examples

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTI applies the
program to the object repeatedly until the object is unchanged.

1:

2: object 2:
« program * 1: resulting object

Techniques.

a DO...UNTIL...END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit (if
true).

Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It’s convenient to store an
object in a local variable when you don’t know beforehand how many
copies you'll need.

Recall from page 98 that an object stored in a local variable is simply
put on the stack when the local variable is evaluated. MULTI uses the
local variable name to put the program argument on the stack and
then executes EVAL to execute the program.

Program: Comments:

&

+ P Creates a local variable p containing
the program from level 1.

& Begins the defining procedure (a
program) for the local variable
structure.

31: More Programming Examples 569

DO Begins the DO clause.

DUP Makes a copy of the object, now in
level 1.

p EVAL Applies the program to the object,
returning a new version.

DUP Makes a copy of the new version of
the object.

ROT Moves the old version to level 1.

UNTIL Begins the UNTIL clause.

SAME Tests whether the old version and the
new version are the same.

END Ends the UNTIL clause.

% Ends the defining program.

% Ends the program.

() MULTI Puts the program on the stack, then
stores it in MULTI.

Checksum: # 34314d
Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

Given an algebraic object, EXCO executes EXPAN repeatedly until the
algebraic doesn’t change, then executes COLCT repeatedly until the
algebraic doesn’t change. In some cases the result will be a number.

570 31: More Programming Examples

13 ‘algebraic’
nee

Techniques.

= Subroutines. EXCO calls the program MULTI twice. It is more
efficient to create program MULTI and simply call its name twice
than write each step in MULTI two times.

Required Programs.

= MULTI (page 569) repeatedly executes the programs that EXCO
provides as arguments.

Program: Comments:

«

« EXPAH » Puts a program on the stack as the
level 1 argument for MULTI. The
program executes the EXPAN
command.

MULTI Executes EXPAN until the algebraic
object doesn’t change.

« COLCT » Puts another program on the stack
for MULTI. The program executes
the COLCT command.

MULTI Executes COLCT until the algebraic
object doesn’t change.

>

(‘} EXCO Puts the program on the stack, then
stores it in EXCO.

31: More Programming Examples 571

Checksum: # 48008d
Bytes: 65.5

Example. Expand and collect completely the expression:

3x (4y +z) + (8x -5z)

Enter the expression.

ores ears wad 1s !3euaC44¥9Z)+(B8H-5
4

flO) 8 &) X E15 bg 2 Pest L 0h [tnt [ecisP] FIED | PIES |

B) F2
ENTER

Select the VAR menu and start the program.

1s '64#A* S41 2eREY- 77 EA
#Zt20%2°2'

OORIN [PUL TH] Es O [MINE [PINS 2 NAPE |

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

Finding the Minimum or Maximum Element
of an Array

This section contains two programs that find the minimum or maximum
element of an array:

= MNX uses a DO... UNTIL... END (indefinite) loop.

wp MNX2 uses a FOR ... NEXT (definite) loop.

572 31: More Programming Examples

MNX (Finding the Minimum or Maximum Element of
an Array — Technique 1)

Given an array on the stack, MNX finds the minimum or maximum
element in the array.

2: CCarrayj]

1: CLarrayi] 1: Z (maximum element of array)

2: CLarray]]
1: CLarray]] 1: Z (minimum element of array)

Techniques.

= DO... UNTIL... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag test
that determines whether to repeat the sort instructions.

w User and system flags for logic control:

w User flag 10 defines the sort: When flag 10 is set, MNX finds the
maximum element; when flag 10 is clear, it finds the minimum
element. You determine the status of flag 10 at the beginning of
the program.

w System flag —64, the Index Wrap Indicator flag, determines when
to end the sort. While flag — 64 is clear, the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag —64 is automatically set, and the sort loop ends.

ws Nested conditional. An IF ... THEN ... END conditional ts nested in
the DO... UNTIL... END conditional— it determines:

ws Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

w The sense of the comparison of elements (either < or >) based
on the status of flag 10.

= Custom menu for making a choice. MNX builds a custom menu that
lets you choose whether to sort for the minimum or maximum

MIN, clears flag 10.

31: More Programming Examples 573

= Logical function. MNX executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

Program:

<

{

"MAR"

16 SF CONT ? 3+
UMTn"!

ig CF CONT * 3 em He

TMENU

"Sort for MAX or MIN?"

PROMPT

1 GETI

DO

ROT ROT

GETI 4 ROLL BUP2

IF

> 16 FS? «aOR

THEN

Comments:

Begins the defining list for the option
menu.

Builds menu keys | Hf: to set flag
10 and continue program execution,
and WH to clear flag 10 and
continue program execution.

Ends the defining list for the
temporary option menu.

Displays the temporary menu and a
prompt message.

Gets the first element of the array.

Begins the DO loop.

Puts the index and the array in levels
1 and 2,

Gets the new array element, moves
the current minimum or maximum
array element from level 4 to level 1.
Then copies both elements.

Begins the conditional.

Tests the combined state of the

relative value of the two elements

and the status of flag 10.

If the new element is either less than

the current maximum or greater than
the current minimum...

574 31: More Programming Examples

SWAP ... Swaps the new element into level
1,

END Ends the conditional.

DROP Saves the current minimum or
maximum and drops the other
element off the stack.

UNTIL Begins the UNTIL clause.

-64 FS? Tests if flag — 64 is set. If flag — 64 is
clear, executes the DO clause again.

END If flag -64 is set, ends the loop.

SWAP DROP @ MENU Swaps the index to level 1, then
drops it off the stack. Restores the
last menu.

%

[) MNX Enters the program, then stores it in
MNX,

Checksum: # 57179d
Bytes: 210.5

Example. Find the maximum element of the following matrix:

12 56

45 1

9 14

Enter the matrix.

[c>] [MATRIX]
12 (ENTER) 56 [ENTER] [¥)
45 (ENTER) 1 [ENTER]
9 [ENTER] 14 [ENTER]
ENTER

31: More Programming Examples 575

Select the VAR menu and execute MNX.

MN

Find the maximum element.

MAS

MNX2 (Finding the Minimum or Maximum Element
of an Array — Technique 2)

Given an array on the stack, MNX2 finds the minimum or maximum

element in the array. MNX2 uses a different approach than MNX; it

executes OBJ— to break up the array into individual elements on the

stack for testing, rather than executing GETI to index through the array.

2: CLarrayi]
1: (CCarrayi] 1: z (maximum element of array)

2: CLarrayj]
1: Clarrayi] 1: Z (minimum element of array)

Techniques.

s FOR... NEXT (definite loop). The initial counter value is 1. The
final counter value is nm - 1 where nm is the number of elements in

the array. The loop-clause contains the sort instructions.

= User flag for logic control. User flag 10 defines the sort: When flag 10

is set, MNX2 finds the maximum element; when flag 10 is clear, it

finds the minimum element. You determine the status of flag 10 at the

beginning of the program.

w Nested conditional. An IF ... THEN ... END conditional is nested in

the FOR ... NEXT loop — it determines:

576 31: More Programming Examples

ws Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

w The sense of the comparison of elements (either < or >) based
on the status of flag 10.

= Logical function. MNX2 executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

= Custom menu for making a choice. MNX2 builds a custom menu that
lets you choose whether to sort for the minimum or maximum
element. aed 1, labeled =

Program:

&

{

UMA

16 SF COHT * &
UMIW"

16 CF COHT ? + i

TMENU

"Sort for MAA or MIN?"

PROMPT

DUP

OBJ>

1

SWAP OBJ>

fz |, sets flag 10. Key 2, labeled

Comments:

Begins the defining list for the
temporary option menu.

conanue program execution.

Ends the defining list for the option
menu.

Displays the temporary menu and a
prompting message.

Copies the array.

Returns the individual array
elements to levels 2 through nm +1,
and returns the list containing 1 and
m to level 1.

Sets the initial counter value.

Converts the list to individual

elements on the stack.

31: More Programming Examples 577

DROP * 1 -

FOR n

DUP?

IF

> 1@ FS? AOR

THEN

SWAP

END

DROP

HEXT

@ MENU

*

(ENTER) [] MNX2 [STO]

Checksum: # 12277d

Bytes: 200.5

Drops the list size, then calculates i

the final counter value (nm - 1).

Starts the FOR ... NEXT loop.

Saves the array elements to be tested

(initially the last two elements).

Establishes the last array element as

the current minimum or maximum.

Begins the conditional.

Tests the combined state of the

relative value of the two elements

and the status of flag 10.

If the new element is either less than

the current maximum or greater than

the current minimum...

... swaps the new element into level

1,

Ends the conditional.

Saves the current minimum or

maximum (and drops the other

element off the stack).

Ends the FOR ... NEXT loop.

Restores the last menu.

Enters the program, then stores it in

MNX2.

578 31: More Programming Examples

Example. Use MNX2 to find the minimum element of the matrix from

the previous example:

12 56

45 1

9 14

Enter the matrix.

[c>] [MATRIX]
12 (ENTER) 56 [ENTER] [¥)
45 (ENTER) 1 [ENTER]
9 [ENTER] 14 [ENTER]

Find the minimum element.

2 1 12561 0 45 1.
MECIA[COMMMIULTIP ESteD [FNS2 [NAME]

Verification of Program Arguments

The two utility programs in this section verify that the argument to a
program is the correct object type.

u NAMES verifies that a list argument contains exactly two names.

= VFY verifies that the argument is either a name or a list containing
exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object
content.

31: More Programming Examples 579

NAMES (Does the List Contain Exactly Two
Names?)

If the argument for a program is a list (as determined by VFY), NAMES

verifies that the list contains exactly two names. If the list does not contain

exactly two names, an error message is displayed in the status area and

program execution is aborted.

i: <¢ valid list >

status-area error message

1: < invalid list > 1:

Techniques.

ws Nested conditionals. The outer conditional verifies that there are two

objects in the list. If there are two objects, the inner loop verifies that

they are both names.

w Logical functions. NAMES uses the AND command in the inner

conditional to determine if both objects are names and the NOT

command to display the error message if they are not both names.

Program: Comments:

«

IF Starts the outer
IF. ..THEN...ELSE...END

structure.

OBJ> Returns the n objects in the list to
levels 2 through (n + 1), and returns
the list size 1 to level 1.

DUP Copies the list size.

2 SAME Tests if the list size is 2.

580 31: More Programming Examples

THEN

DROP

IF

TYPE 6 SHAME

SWAP TYPE 6 SAME

AND

NOT

THEN

"List needs two names"

DOERR

END

ELSE

DROPH

"Tllegal list size"

DOERR

EHD

Pa

(] NAMES

If the list size is 2...

... moves the objects to levels 1 and
Z

Begins the inner IF. ..THEN...END
structure.

Tests if the first object is a name. If
so, returns a true result (1). If not,
returns a false result (0).

Moves the second object to level 1,
then tests if it is a name.

If both results are true, returns a
true result (1). If either or both
results are false, returns a false result
(0).

Returns the opposite result.

If the opposite result is true (if the
objects are not both names) ...

... displays an error message and
aborts program execution.

Ends the inner conditional.

If the list size is not 2...

... drops the list size, displays an
error message, and aborts program
execution.

Ends the outer conditional.

Enters the program and stores it in
NAMES.

31: More Programming Examples 581

Checksum: # 40666d
Bytes: 141.5

NAMES is demonstrated in program VFY.

VFY (Verify Program Argument)

Given an argument on the stack, VFY verifies that the argument is either
a name or a list that contains exactly two names.

1: ‘name’ fit mamet
1: < valid list 3 1: £ valid list >

status-area error message

i: < invalid list > i: < invalid list >

status-aresa error message

1: invalid object 1: invalid object

Techniques.

= Utility programs. VFY by itself has little use. However, it can be used
(with minor modifications) by other programs to verify that specific
object types are valid arguments.

= CASE... END (case structure). VFY uses a case structure to
determine if the argument is a list or a name.

ws Structured programming. If the argument is a list, VFY calls NAMES
to verify that the list is valid.

= Local variable structure. VFY stores its argument in a local variable
so that it may be passed to NAMES if necessary.

w Logical operator. VFY uses NOT to display an error message.

Required Programs.

s NAMES (page 580) verifies that a list argument contains exactly two

names.

582 31: More Programming Exampies

Program: Comments:

&

DUP Saves the original argument.

DTAG Removes any tags from the
argument for subsequent testing.

> arg Stores the argument in local variable
arg.

« Begins the defining procedure (a
program) for the local variable
structure.

CASE Begins the case structure.

arg TYPE 3 SAME Tests if the argument is a list.

THEN If the argument is a list ...

arg NAMES ... puts the argument back on the
stack, and calls NAMES to verify that
the list is valid.

END Ends the first case. (If the first case
was true, leaves the case structure. If
the first case was false, goes to the
next case.)

arg TYPE 6 SAME NOT Tests if the argument is a name, then
inverts the test result.

THEN If the argument is not a name (and
not a list) ...

"Hot name or list" ... displays an error message and

DOERR aborts program execution.

EHD Ends the second case.

END Ends the case structure.

31: More Programming Examples 583

» Ends the defining procedure.

2

ENTER] ['] VFY Enters the program, then stores it in

VFY.

Checksum: # 14621d
Bytes: 135.5

Example. Part 1. Execute VFY to test the validity of the name

argument PAT.

Put the name PAT on the stack. Select the VAR menu and execute VFY.

() PAT (ENTER’ ENTER! 1: 'PAT'
ar Very | EER EINTP|SETTS] Ta | PIE

The argument is valid and is simply returned to the stack.

Part 2. Execute FY to test the validity of the list argument { PAT

DIANA TED }.

Put the names DIANA and TED on the stack. Convert the three names

now on the stack to a list.

(] DIANA [ENTER] i: { PAT DIANA TED 3

() TED (ENTER) (ENTER) CERES Wake Ea EE ES ed

Execute VFY. Since the list contains too many names, the error message is

mre and program execution is aborted.

Illegal list 51zeé

{ PAT DIANA TED }
UL TH] Esc [Hinata [nite [NAPE

584 31: More Programming Examples

Bessel Functions

Ri
The real and imaginary parts of the Bessel function J, (xe 4
Ber, (x) and Bei, (x). When n = 0,

Ber(x) =1- @/0 , &2Y _...

2!2 4!2

) are denoted

-10

User-defined function BER calculates Ber(x) to 12 significant digits.

a
Techniques.

= Local variable structure. BER consists solely of a local variable
structure and so has two properties of a user-defined function; it
takes numeric or symbolic arguments from the stack or in algebraic
syntax. Because BER uses a FOR ... STEP loop, its defining
procedure is a program. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike a user-defined function, BER is not
differentiable.

31: More Programming Examples 585

= FOR... STEP loop (definite loop with counter). Successive terms in
the series are calculated with a counter-controlled loop. When the
new term does not change the series value within the 12-digit
precision of the calculator, the loop ends. The final counter value
(9.0 x 10*”) ensures that enough terms will be calculated.

= Nested conditional. The IF ... THEN ... ELSE ... END conditional
within the definite loop sets the step value n for the loop counter. As
long as the newly calculated series value does not equal the old series
value, the step value 7 is set to 2. When the new series value does
equal the old series value, the step value is set to a number larger
than the final value of the counter, ending the definite loop. In
essence, the nested conditional makes the outer loop work like a
DO... UNTIL... END (indefinite) loop.

Program: Comments:

&

> x Creates local variable x.

« Begins the defining procedure (a
program) for the local variable
structure.

1 Writes the first term of the series.

2 9.,E499 Sets the counter for the

FOR ... STEP loop.

FOR j Begins the loop.

DUP Saves the current value of the series

(initially 1).

'C=19"%C j729% Calculates the next term of the

Cx/29* C28 iD Series.

fSOCj!>' EVAL

+ Adds the next term to the current

value of the series to calculate the

new value of the series.

586 31: More Programming Examples

IF

DUP ROT #

THEH

2

ELSE

9.1E499

END

STEP

»

>

[ENTER] [] BER (STO)

872d
148

Checksum:
Bytes:

Example. Calculate Ber(3).

31:

Begins the conditional.

Tests if the new series value is not
equal to the old series value.

If the new and old values are not

equal...

.. specifies n = 2.

If the new and old terms are equal
(to 12-digit precision) ...

.. specifies n = 9.1E499

Ends the conditional.

Specifies the step value based on the
conditional.

Ends the defining procedure.

Enters the program, then stores it in
BER.

1: - 2213802456
fe Sd es

1: 791734162714
Peer [sinte[serts] ten] PIE [|

587 More Programming Examples

Animation of Successive Taylor’s
Polynomials

This section contains three programs that manipulate graphics objects to
display a sequence of Taylor’s polynomials for the sine function.

u SINTP draws a sine curve, and saves the plot in a variable.

ms SETTS superimposes plots of successive Taylor’s polynomials on the
sine curve plot from SINTP, and saves each graphics object in a list.

= TSA displays in succession each graphics object from the list built in
SETTS.

Drawing a Sine Curve and Converting It toa
Graphics Object

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable.

Techniques.

= Programmatic use of PLOT commands to build and display a
graphics object.

Program: Comments:

£

'%' PURGE Makes X a formal variable, then

'SINCX)' STEM stores the expression for sin x in EQ.

-2 2 RNG Sets the y-axis display range.

ERASE DRAW Erases PICT, then plots the
expression.

588 $31: More Programming Examples

PICT RCL 'SINT' STO Returns the resultant graphics object
to the stack and stores it in SINT.

+

(‘) SINTP Stores the program in SINTP.

Checksum: § # 61373d

Bytes: 78.5

Superposition of Successive Taylor’s Polynomials

SETTS superimposes successive Taylor’s polynomials on a sine curve and
stores each graphics object in a list.

Techniques.

w Structured programming. SETTS calls SINTP to build a sine curve
and convert it to a graphics object.

= FOR ...STEP (definite) loop. SETTS calculates successive Taylor’s
polynomials for the sine function in a definite loop. The loop counter
serves as the value of the order of each polynomial.

= Programmatic use of PLOT commands. SETTS draws a plot of each
Taylor’s polynomial.

w Manipulation of graphics objects. SETTS converts each Taylor’s
polynomial plot into a graphics object. Then it executes + to combine
each graphics object with the sine curve stored in SINT, creating nine
new graphics objects, each the superposition of a Taylor’s polynomial
on a sine curve. SETTS then puts the nine new graphics objects, and
the sine curve graphics object itself, in a list.

31: More Programming Examples 589

Program:

&

SINTP

i” 1 FOR x

x ‘A’ DUP
SIN SWAP ROT TAYLR
STEQ ERASE DRAW

PICT RCL SINT +

-2 STEP

SINT 16 +LIST
'TSL' STO

>

(ENTER) [] SETTS [STO]

Checksum: # 5841d
Bytes: 136.5

Comments:

Plots a sine curve and stores the

graphics object in SINT.

For each value of local variable x ...

... plots the Taylor’s polynomial for
the sine curve (where x is the order
of the polynomial).

Returns the plot to the stack as a
graphics object and executes + to
superimpose the Taylor series on the
sine curve stored in SINT.

Decrements the loop counter (the
order of the Taylor’s polynomial) by
2 and repeats the loop.

Puts the sine curve graphics object
on the stack, then builds a list that
contains that graphics object and the
nine graphics objects created in the
FOR ... STEP loop. Stores the list in
TSL.

Stores the program in SETTS.

590 31: More Programming Examples

Animation of Taylor’s Polynomials

TSA displays in succession each graphics object created in SETTS.

(eo oe
Techniques.

w Passing a global variable. Because SETTS takes a long time to
execute (approximately six minutes), TSA does not call SETTS.
Instead, you must first execute SETTS to create the global variable
TSL containing the list of graphics objects. TSA simply executes that
global variable to put the list on the stack.

= FOR... NEXT (definite loop). TSA executes a definite loop to
display in succession each graphics object from the list.

Program: Comments:

€

TSL Puts the list TSL on the stack.

OBJ> Puts the 10 graphics objects from the
list and the list count on the stack.

1 SWAP FOR = For s from 1 to 10...

ERASE +LCD ... clears the display, converts the
i WAIT level-1 graphics object to a display

image, and shows it for one second.

HEAT

%

() TSA Stores the program in TSA.

31: More Programming Examples 591

Checksum: # 39562d
Bytes: 51

Example. Execute SETTS and TSA to build and display in succession a

series of Taylor’s polynomial approximations of the sin function.

Set Radians mode. Execute SETTS to build the list of graphics objects.

SETTS takes about six minutes to execute. Execute TSA to display each

plot in succession. The display shows TSA in progress.

(+) (RAD) (if necessary)

SELES
FSR

ee a et ee ee ee ee ee ee

Programmatic Use of Statistics and Plotting

Program PIE prompts for single variable data, stores that data in the

statistics matrix DAT, then draws a labeled pie chart that shows each

data point as a percentage of the total.

ee la on
Techniques.

= Programmatic use of PLOT commands. PIE executes XRNG and

YRNG to define x- and y-axis display ranges in user units, executes

ARC to draw the circle, and LINE to draw individual slices.

= Programmatic use of matrices and statistics commands.

= Manipulation of graphics objects. PIE recalls PICT to the stack and

executes GOR to merge the label for each slice with the plot.

s FOR... NEXT (definite) loop. Each slice is calculated, drawn and

labeled in a definite loop.

592 31: More Programming Examples

u CASE... END structure. To avoid overwriting the circle, each label
is offset from the midpoint of the arc of the slice. The offset for each
label depends on the position of the slice in the circle. The CASE ...
END structure assigns an offset to the label based on the position of
the slice.

ws Preservation of current calculator flag status. Before specifying
Radians mode, PIE saves the current flag status in a local variable,
then restores that status at the end of the program.

= Temporary menu for data input.

Program:

&

RCLF 3+ flags

RAD

{€ "SLICE" 2+ +

{ 3
{ "CLEAR" CLe 3

eo

{ "DRAW" COWT >

3

TMENU

"Key values into

SLICE, =DRAW

restarts program. "

PROMPT

Comments:

Recalls the current flag status and
stores it in variable flags.

Sets Radians mode.

Begins the defining list for the input
menu.

Defines key 1. Key 1 executes 2+ to
store each data point in EDAT.

Defines keys 2 and 3. Key 3 clears
UDAT.

Defines as 4, 5, and 6. Key 6,
labeled =ORAW continues program
execution “after data entry.

Ends the defining list.

Displays the temporary menu.

Prompts for inputs. The = is the
calculator’s representation of the #
character ((c>}[—2)) after the
program has been entered on the
stack.

31: More Programming Examples 593

594

ERASE 1 131 ARNG

1 64 YRNG CLLCD

"Please wait. ...&

Prawing Pie Chart"

1 DISP

(66,329 26 @ 6.25

ARC

PICT RCL +LCD

RCLZ TOT

DUP 188 *

+ prconts

<

2m? ?NlM * * &

> prop angle

Prop SIZE UBJ?

CROP SWAP

FOR x

C66,32) prop x GET

‘'asnagle' STO+

angle COS LASTARG

SIH R+#C 2H * OVER +

LINE

Erases the current PICT and sets
plot parameters.

Displays “drawing” message.

Executes ARC to draw the circle.

Displays the empty circle.

Recalls the statistics data matrix,
computes totals, and calculates the
proportions.

Converts the proportions to
percentages.

Stores the percentage matrix in
prents.

Multiplies the proportion matrix by
2a.

Stores the proportions in prop and
initializes angle to 0.

Sets up Start and finish for
FOR. ..NEXT loop.

Begin FOR clause.

Puts the center of the circle on the
stack and gets the xth value from the
proportion matrix.

Computes the endpoint and draws
the line for the xth slice.

31: More Programming Examples

PICT RCL Recalls PICT to the stack.

angle prop x GET For labeling the slice, computes the
2/7 — DUP midpoint of the arc of the slice.
COS LASTARG SIN R4C

26 * (66,352) +

SWAP DUP Starts the CASE. ..END structure to
CASE determine the offset value for the

label.

1.5 4

THEW From 0 to 1.5 radians...

CROP ... doesn’t offset the label.

EMD

DUP 4.4 4

THEH From 1.5 to 4.4 radians ...

DROP i5 - ... Offsets the label 15 user units left.

END

2 4

THEH From 4.4 to 5 radians...

C352) + ... offsets the label 3 units right and
2 units up.

EHD

EHD

Prents x GET Gets the xth value from the
percentage matrix.

1 RHD Rounds the percentage to one
decimal place.

35TR "AK" + Converts the percentage to a string
and adds % to the string.

31: More Programming Examples 595

1 +GROEB

GOR DUP PICT STO

+LCD

NEAT

{ 3} PYIEM

%

%

flags STOF

* 2 MEHU

»

[ENTER] [} PIE [STO]

Checksum: # 8706d

Bytes: 758.5

Converts the string to a graphics
object.

Adds the label to the plot and stores
the new plot.

Displays the plot with the new slice
and label.

Displays the finished plot.

Restores the original flag status.

Displays the VAR menu. (Note that
the user must first press to
clear the plot.)

Enters the program and stores it in
PIE.

Example. The fruit inventory at Joe’s grocery includes 983 oranges, 416
apples, and 85 bananas. Draw a pie chart to show each fruit’s percentage
of total inventory.

Start PIE.

JPIRS values into SLICE
W restarts prosoram.

596 31: More Programming Examples

Clear the current statistics data. (The prompt is removed from the
display.) Key in the new data and draw the pie chart.

Animation of a Graphical Image

Program WALK shows a man walking across the display. It animates this
custom graphical image by incrementing the image position in a loop
structure.

Techniques.

= Use of a custom graphical image in a program. (Note that the
programmer derives the full information content of the graphical
image before writing the program by building the image interactively
in the Graphics environment and then returning it to the command
line.)

w FOR...STEP definite loop to animate the graphical image. The
ending value for the loop is MAXR. Since the counter value cannot
exceed MAXR, the loop executes indefinitely.

31: More Programming Examples 597

Program:

<

GROB 3 15 E366
144615661C661466ES668

S696C 1 1GAABE946859006

41692260141625h8

> Man

ERASE < # Gd # @d +

PVIEW

{ # 6d # 25d 3

PICT OVER man GkOR

2) MAAR FOR 1

1 1351 MOD R36

25d 2 eLIST

PICT OVER man GaOR

PICT ROT man GAOR

Comments:

Puts the graphical image of the man
in the command line. (Note that the
hexadecimal portion of the graphics
object is a continuous integer
E369. . . 2888. The linebreaks do
not represent spaces.)

Creates local variable man
containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the stack
and turns on the first image. This
readies the stack and PICT for the
loop.

Starts FOR. ..STEP loop to generate
horizontal coordinates indefinitely.

Computes the horizontal coordinate
for the next image.

Specifies a fixed vertical coordinate.
Puts the two coordinates in a list.

Displays the new image, leaving its
coordinates on the stack.

Turns off the old image, removing its
coordinates from the stack.

598 31: More Programming Examples

5 STEP Increments the horizontal coordinate
by 5.

%

%

(‘) WALK Stores the program in WALK.

Checksum: # 4342d
Bytes: 236.5

Example. Send the man out for a long walk.

Select the VAR menu and execute WALK.

When he tires, press to take him home (and end the program).

31: More Programming Examples 599

Picton, Vee ia aia

Sushi. Wer => samen |

79 %* 5S sh : Pita cin erp tiyed aque i ites

= ee : 4. jour “hal = .¢ > —*ac in {fate (ee "7

Wy . be to decree A~ —s) =~ iA ald. aon -

rigs ° + ~~." 1F, pi [ha ainbrw ie legit

~ smb 7 Ts
2 6 a4: (> : 7 aL bse spiny, ate ae a el oe err ais

aa C—>- ‘ Aen

mam 005-4 Thal Wy 2. POE.

ae et SS
$s wi # as 4 Mh? oF i C- V ner ele : 7

S ASP) thet imme eS Cy at a
at a ee MENTS

. + © - 4itt Anituw ui is Fahy Ct
7 | ate Ties $y reall a 8) ee te

~ ec Ls } “au, > ott 1@>% , padi 2¢

Tit | ad! 2 Gt SPF? Sie rol “UPN GL Fal S i Sarl 3? \ birder

aepeynrus © > itt. “4p 0 tie AT iP tae hit © > steel S

a ee

——— —_— = a

(i . = @. ee. - wf 4s 24 AE sed.
ops, + uy =~—qGids Sib Us

4s 7 yt! [: je ua: Cast) 1S ~— Idy, SRS
A-*t* gh 4 : the, 7%

i@ - _ "+e = Dy <—ig %2 . ;

y-- tt : > wy fF |

tt

: = 4

Part 5

Printing, Data Transfer, and
Plug-Ins

32

This chapter describes how to use your HP 48 with an HP 82240B
Infrared Printer, with an HP 82240A infrared printer, and with printers
that connect to the serial port.

Printing with an HP 82240B Printer
You can send information from your HP 48 to an HP 82240B Infrared
Printer via the infrared port. Refer to the printer manual for instructions
about how to operate the printer and how to position the printer relative
to the HP 48,

602 32: Printing

PRINT Commands

Programmable Description
Command

When and are pressed
simultaneously and then released, the
current display is printed.

(>) [PRINT Prints the object in level 1.

Prints the object in level 1.

Prints all objects on the stack starting
with the object in the highest level.

Prints all objects on the stack in
compact form, starting with the object
in the highest level.

Prints the current display.

Searches the current path for the
specified variables, and prints the name
and contents of each variable. The
variables are specified either by name
or in a list in level 1.

Causes printer to do a carriage-
return/line-feed, printing the contents, if
any, of the printer buffer.

Sets the delay time, < 6.9 seconds,
between sending lines of information to
the printer.

OLDPRT Remaps the HP 48 character set to the
HP 82240A Infrared Printer.

32: Printing 603

Print Formats

Multiline objects can be printed in multiline format or compact format.
Multiline printer format is similar to multiline display format, with the
following exceptions:

w Strings and names that are more than 24 characters long are
continued on the next printer line.

u The real and imaginary parts of complex numbers are printed on
separate lines if they don’t fit on the same line.

= Arrays are printed with a numbered heading for each row and with a
column number before each element. For example, the 2 x 3 array

ta
456

would be printed like this:

Array dimensions

Row Array € 23 }
number —y Row i

i] i
Column 2] 2

number | 2] 3

Row 2
11] 4
21] 2
3] 6

Compact printer format is the same as compact display format: Multiline
objects are truncated and appear on one line only.

-The PRSTC command prints the stack in compact form. All other print
commands print in multiline format.

604 32: Printing

Basic Printing Commands

Printing the Display. To print an image of the display under any
condition without using the PRINT menu: *

41. Press and hold (ON).

2. Press and release (the key with “PRINT” written above it).

3. Release [ON].

uh A low-battery condition may result in consistent failure of
the printing procedure. If you notice consistent

Note failure, replace your calculator batteries to remedy the
situation.

The PRLCD command ((4) (PRINT) FREED) also prints an image of the
display.

* These keystrokes use the current DELAY setting. Also, if you are printing to the serial
port to capture graphics data on your printer, the serial port must be open (the
OPENIO command) before these keystrokes are executed.

32: Printing 605

Printing the Contents of Level 1 of the Stack. PR1 ((4)[PRINT)
“PRL) prints the contents of level 1 in multiline printer format. All

objects except strings are printed with their identifying delimiters. Strings

are printed without their " delimiters. PR1 can be executed also by
pressing (c>}[PRINT).

the stack, starting with the object in he ic hig oe ts in multiline printer

format (except for graphics objects, which print the same as they are

displayed).

PRSTC (4) (PRINT)) prints all objects on the stack, starting with
the object in the bighoat level in compact printer format.

Printing Variables. PRVAR ((4)[PRINT) FRYAR) searches the
current path for the variables that you have specified, and prints the name

and contents of each variable in multiline printer format. PRVAR takes

one argument from the stack: either one name or a list containing one or

more names. (PRVAR also prints backup objects.)

Printing a Text String

You can print any sequence of characters by entering a string object that
contains the characters and executing PR1. The printer prints the
characters without the quotation marks and leaves the print head at the
end of the print line. Subsequent printing begins on the next line.

Printing a Graphics Object

Like other objects, you can print a graphics object either by putting the
graphics object in level 1 and executing PR1, or, if the graphics object is

stored in a variable, by entering the variable name and executing PRVAR.

Graphics objects wider than 166 dot columns are printed in 166-column

wide segments down the paper, separated by a dashed line. For example,

a 350-column wide graphics object would be printed in two 166-column

segments and one 18-column segment.

606 32: Printing

Double Space Printing

To select double-space printing (one blank line between lines), set flag
—37. To return to single-space printing, clear flag —37.

Setting the Delay

The DELAY command lets you specify how long the HP 48 waits between
sending lines of information to the HP 82240B Infrared Printer. DELAY
takes a real number from level 1 that specifies the delay time in seconds.
If you do not specify a delay, it is automatically set to 1.8 seconds. The
maximum delay is 6.9 seconds.

A shorter delay setting can be useful when the HP 48 sends multiple lines
of information to your printer (for example, when printing a program).
To optimize printing efficiency, set the delay just longer than the time the
printhead requires to print one line of information.

If you set the delay shorter than the time to print one line, you may lose
information. Also, as the batteries in the printer lose their charge, the
printhead slows down, and, if you have previously decreased the delay, you
may have to increase it to avoid losing information. (Battery discharge
will not cause the printhead to slow to more than the 1.8 second default
delay setting.)

The HP 48 Character Set

The table in appendix C lists each HP 48 character and its corresponding
character code. Most of the characters in the table can be directly typed
into the display from the Alpha keyboard. For example, to display 4,
type [a] [«4)[4]. (The Alpha keyboard is presented in chapter 2.) Any
character in the table can be displayed by typing its corresponding
character code and then executing the CHR command. The syntax is
Char# CHR. Certain characters in the table in appendix C are not on the
Alpha keyboard. To display one of these characters, you must type its
character code and execute CHR.

The HP 82240B Infrared Printer can print any character from the HP 48
character set.

32: Printing 607

Sending Escape Sequences and Control Codes

You can select various printer modes by sending
 escape sequences to the

printer. An escape sequence consists of the escape character — character

71 — followed by additional characters. When the printer receives an

escape sequence, it switches into the selected mode. The escape sequence

itself isn’t printed.

Printer owner’s manuals generally describe the escape sequence
s and

control codes recognized by the printer
.

Use CHR and + to create escape sequences and use P
R1 to send them to

the printer.

Example. These characters send information to the HP 82240B printer

to turn on Underline mode, underline
 the string HELLO, and then turn

off Underline mode:

2? CHR 251 CHR + "HELLO" +

2? CHR + 25@ CHR + PRI

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a single

print line by accumulating data in the printer's buffer.

Normally, each print command completes data transmission by

automatically executing the CR (carriage right) command, which tells the

printer to do a carriage-return/line-fee
d. Then the printer prints the data

currently in its buffer and leaves the p
rint head at the right end of the

print line.

You can disable the automatic execution of the CR command by setting

flag —38, the Line-feed flag. Data from subsequent print commands is

accumulated in the printer buffer and is printed on
ly when you manually

execute CR. When flag —38 is set, follow these three rules:

a Execute CR ((4)(PRINT) ...CR

(Alternately, send character 4 or
character 10.)

= Print the data in the buffer before you ac
cumulate more than 200

characters. Otherwise, the buffer fills up and subsequent characters

are lost.

608 32: Printing

ws Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

Clear flag —38 to restore normal operation of the print commands.

Printing with an HP 82240A Infrared Printer

You can use your HP 48 calculator with an HP 82240A Infrared Printer,
executing the same print commands that you would use for an
HP 82240B. However, the character set in the HP 82240A Infrared
Printer does not match the HP 48 character set:h

ws 24 characters in the HP 48 character set are not available in the
HP 82240A Infrared Printer. (From the table in appendix C, these
characters are numbers 129, 130, 143-157, 159, 166, 169, 172, 174, 184,
and 185.) The HP 82240A prints a # in substitution.

ws Many characters in the extended character table (character codes 128
through 255) do not have the same character code. For example, the
« character has code 171 in the HP 48 and code 146 in the
HP 82240A Infrared Printer. If you want to use the CHR command
to print extended characters with an HP 82240A Infrared Printer, first
execute OLDPRT. OLDPRT adds a remap string to the PRTPAR
variable, which changes the character code of each byte to match the
codes in the HP 82240A Infrared Printer character table. (If you
want to print a string containing graphics data, OLDPRT must not be
in effect.)

If you executed OLDPRT to print with an HP 82240A Infrared Printer,
and then want to print to an HP 82240B Infrared Printer, you should first
purge the reserved variable PRTPAR. (You can first copy its contents to
another variable if you want to save the settings for later use.) This resets
the print parameters so that the character set matches the HP 82240B.
(PRTPAR is described on page 611.)

32: Printing 609

Printing to the Serial Port

You can print to a serial printer via the HP 48 serial port. Once the

HP 48 is connected to the printer:

1. Set flag -34, the Printing Device flag.

2. Check that flag —33, the I/O Device flag is clear. (The default is

clear.) °

3. Set the HP 48 baud rate, parity, and translation code appropriately

for your printer. These can be set using the I/O SETUP menu,

described on page 617.

4. If your printer uses XON/XOFF handshaking, edit (or create)

IOPAR to set transmit pacing #0. The reserved variable JOPAR is

described on page 618.

5. If the number of characters that fit on one line on your printer is

not 80, edit PRTPAR to contain the correct number as the third

element in its list. (See the next section for information on

PRTPAR.)

6. If your printer requires a line termination sequence other than

carriage-return/line-feed, edit PRTPAR to contain that sequence as

the fourth element in its list. The reserved variable PRTPAR is

described in the following section.

You can execute any of the print commands described in this chapter with

a serial printer. However, note that:

The maximum line length to print is specified in the reserved variable
PRTPAR (described next).

m You cannot print a graphics object.

* Setting both flags -33 and -34 would enable infrared serial data transmission. Printing

with an HP 82240B Infrared Printer when these flags are set will not work—the

HP 82240B would likely print blots.

610 32: Printing

The PRTPAR Variable

When you first print information with a command from the PRINT menu,
the HP 48 automatically creates the PRTPAR variable. PRTPAR is a
reserved variable containing a list that specifies how the HP 48 works with
the printer. The list contains, in order, the following objects:

= A real number that specifies the delay time, in seconds. If you have
not previously executed DELAY, the delay time is automatically set to
1.8 seconds in PRTPAR.

w A string that represents the current remapping of the HP 48 extended
character set. The string can contain as many characters as you want
to remap, with the first character in the string being the new
character 128, the second being the new character 129, and so on.
(Any characters outside the string length will not be remapped.) If
you have not previously executed OLDPRT, the string is empty; if you
have executed OLDPRT, the string contains the character remapping
for the HP 82240A Infrared Printer.

= Areal number that specifies the line length, in number of characters,
for serial printing. This parameter does not affect infrared printing.
The default is 80 characters.

w A string that represents the line termination method for serial
printing. This parameter does not affect infrared printing. The
default is carriage-return /line-feed (control characters 13 and 10).

You can edit any parameter in the list. The delay time, however, can be
set more easily using the DELAY command: Enter the delay number (6.9

32: Printing 611

33

Transferring Data to and from the
HP 48

This chapter covers:

= Transferring data from one HP 48 to another using the infrared port.

= Transferring data between the HP 48 and a computer using the serial
port. (For this operation, you need the Serial Interface Kit
appropriate for your computer. For more information, see your
Hewlett-Packard dealer.)

w Other serial I/O operations.

The HP 48 uses Kermit file transfer protocol to transfer data and to
correct transmission errors between two HP 48 calculators, or between an
HP 48 and a computer. Kermit protocol was developed at the Columbia
University Center for Computing Activities.

The calculator commands needed to accomplish Kermit data transfer are
built into the HP 48. Therefore, you can transfer data from one HP 48 to
another by simply lining up the two infrared ports and executing the
proper commands, which are described in this chapter.

To transfer data to and from a computer, the computer must be running a
program that implements Kermit protocol. Also, there must be a cable
connecting the HP 48 and the computer. Details about the cable
connection are covered later in this chapter. (Kermit protocol and a

612 33: Transferring Data to and from the HP 48

special serial cable are required for this operation and are available from
your Hewlett-Packard dealer as part of a Serial Interface Kit to match
your computer.)

If you want additional information on Kermit protocol, a book by Frank
da Cruz, KERMIT, A File Transfer Protocol, is available in many
bookstores or can be ordered. *

The HP 48 provides additional serial I/O commands for non-Kermit data
transfers. These commands are for specialized I/O operations — for
example, printing directly from the HP 48 to a serial printer.

Types of Data You Can Transfer

The unit of information that is transferred using Kermit protocol is called
a file. In the HP 48 world, a file can consist of:

ws A named object (variable, backup object, etc.).

= An entire directory. When you transfer a directory, the contents of all
the subdirectories under that directory are also transferred.

= All of user memory — all the variables you’ve created, the user-key
assignments, and the Alarm Catalog.

In all cases, a copy of the data is sent to the receiving device and stored as
a file (variable) in the current directory.

When you transfer a directory or all of user memory between an HP 48
and a computer, the data is sent as a single file, and you cannot
conveniently access the contents of the individual variables in that file.
For this reason, a directory transfer to a computer should be done mainly
for archiving purposes. When the purpose of a file transfer is to use the
file at its destination (for example, to edit a program on your computer),
you should transfer the contents of the individual variable. If you put the
variable names in a list and use the SEND command to transfer the data,
the variables can then be accessed individually.

* da Cruz, Frank. 1987. KERMIT, A File Transfer Protocol. Bedford, MA: Digital Press.

33: Transferring Data to and from the HP 48 = 613

When you transfer a directory from one HP 48 to another, it is installed in
the destination machine as a normal directory. This means that it can be
manipulated just like other directories and its variables are all accessible.
Transferring a directory from one HP 48 to another is a good way to
transfer a set of related objects — for instance, a set of programs,
variables, printer configurations, etc.— all ready to be used together by
the destination HP 48.

The I/O Menu

The commands for Kermit protocol and serial operations are contained in
the I/O menu. The serial commands are covered at the end of the
chapter.

Kermit Protocol Commands

Keys | Programmable Description
Command

[¢4}[1/0] (pages 1 and 2):

“SEND SEND Sends the contents of one or more
variables to another device. SEND

takes an argument from level 1— the
variable name, or a list of names
¢name,name, ... 3. (Seethe
paragraph immediately following this
table for more information.)

Tells the HP 48 to wait to receive a
variable from another Kermit protocol
device.

SERVER Puts the HP 48 into Kermit Server
mode. (Also executed by pressing

[>)(/9)}.)

614 33: Transferring Data to and from the HP 48

Kermit Protocol Commands (continued)

Programmable Description
Command

KGET Gets one or more variables from a
server device. KGET takes an
argument from level 1—the name of
the requested variable, or a list of
names {name,name,... +. (See
the paragraph immediately following
this table for more information.)

FINISH Issues the Kermit FINISH command to

a server device to terminate Server

mode.

Displays the SETUP menu for setting
|/O parameters.

|RECGV=, except that it takes
a name argument. The received file is
stored using that name.

Provides the ability to send a Kermit
command “packet” to a server. It
takes the packet data field as a string
in level 2 and the packet type as a
string in level 1. For example,
"BD" "G" PRT sends a “generic
directory’ command.

KERRM Returns the text of the most recent

Kermit error.

OPENIO Opens the serial port using the 1/O
parameters in JOPAR.

CLOSEIO Closes the serial port, clears KERRM,
and clears the input buffer.

33: Transferring Data to and from the HP 48 615

You can also use SEND and KGET to rename a variable when it’s
transferred by including a sublist for that variable in the main list. The
first element in the sublist is the existing variable name and the second
element is the new name. For example, executing the SEND command
with the list { {name, name} name; name, } as an argument would
result in name; and name, being sent under their own names and name,
being sent under the new name of name.

Local and Server Modes

There are two Kermit protocol configurations for transferring data from
an HP 48 to another HP 48 or computer:

a Local/Local. Both machines are controlled /ocally from their own
keyboards, and Kermit commands can be issued by either machine.
Data is transmitted by issuing a SEND command from the sender’s
keyboard and a RECV or RECN command from the receiver’s
keyboard.

w Local/Server. One machine is controlled locally and the other
machine is a server. The server passively waits for instructions or data
from the sender. A server:

= Receives data when a sender executes a SEND command.

= Transmits data when it receives a KGET command.

= Ceases to be a server when it receives a FINISH command.

Local/Server mode is most useful when you wish to transfer a number of

variables from different directories; the local device can issue repeated
“send” or “get” commands to which the server responds.

616 33: Transferring Data to and from the HP 48

Setting the |/O Parameters

The SETUP Menu

for changing them. If the displayed settings are overwritten by the stack
or other information, press [4;)(REVIEW] to redisplay them.

SETUP Menu

Switches between IR (infrared) and
Wire (serial) modes. In IR mode, I/O
output is directed to the infrared port.
In Wire mode, |/O output goes to the
serial port.

Switches between ASCII and binary
| transmission modes (see page 629).

Steps through 1200, 2400, 4800, and
9600 baud. The default transfer rate is
9600 baud.

Steps through odd (1), even (2), mark
| (3), space (4), and no (0) parity. The
| default is no parity.

33: Transferring Data to and from the HP 48 617

SETUP Menu (continued)

Programmable Description
Command

Steps through checksum (error
detection) options. The CKSM set is
the type of checksum requested when
initiating a SEND. Choices are 1 (1-
digit arithmetic checksum), 2 (2-digit
arithmetic checksum), and 3 (3-digit
cyclic redundancy check, or CRC).
The default is 3; IR transmissions
should use 3.

Steps through the character translate
code options. Choices are 0 (no

dod Ae A eX!

nid IR ore

TRANSIO

: me translation), 1 (translate character 10
3 od haw to characters 13 and 10), 2 (translate
4 ware" | characters 128 through 159), or 3

(translate characters 128 through
0 1k ok. 255). The default is 1. (See page 626

for more information.)

The BAUD, PARITY, CKSM, and TRANSIO commands can be used in
programs by preceding the command with the number representing the
appropriate choice.

The IOPAR Variable

The reserved variable JOPAR stores the I/O parameters needed to
establish a communications link with a computer. JOPAR contains a list
consisting of these elements:

{ baud parity receive-pacing transmit-pacing checksum
translate-code }

618 33: Transferring Data to and from the HP 48

IOPAR is created in the HOME directory the first time you transfer data PEN

you change the settings using the eommandat in the I/O SETUP menu.

The Parity Setting. If the parity setting is positive, it is used on both
transmit and receive. If it is negative, it is used only on transmit, and
parity is not checked during receive. The menu key PARI T steps
through only positive choices, but you can make the parity negative by
putting the negative parity number on the stack, keying in the command
PARIT‘Y, and pressing [ENTER]. You can also edit JOPAR, which contains
the current I/O parameter settings, to make the parity element negative.

Receive Pacing and Transmit Pacing. Receive pacing and transmit
pacing are not used by Kermit protocol. They can, however, be used in
other serial I/O transfers — for instance, printing with a serial printer. A
non-zero value for receive pacing causes the HP 48 to send an XOFF
signal when its receive buffer is getting full, and then an XON signal when
it can take more data. A non-zero value for transmit pacing causes the
HP 48 to stop transmitting if it receives an XOFF signal and wait for an
XON signal to continue. The default settings for both these JOPAR
elements is 0, which means “don’t send XON/XOFF signals, and ignore
any that are received.”

Transferring Data between Two HP 48's

Before beginning the transfer:

1. On the sender, switch to the directory where the variables are
located. Use the IO SETUP menu to set IR and binary transfer
modes and to set the CKSM to 3.

2. On the receiver, use the IO SETUP menu to set IR transfer mode.
Then, switch to the directory to which you want the data sent.

33: Transferring Data to and from the HP 48 ~=619

3. Line up the infrared ports by lining up the a marks (near the
Hewlett-Packard logo just above the display). The calculators
should be no farther apart than 2 inches.

To transfer data using the local/local configuration:

1. On the receiver, do either of the following:

m Execute RECV ((4){I/0) “RECY)
the name given by the sender.

to store the variable under

= If you want to change the variable name, enter a new name and
execute RECN ([#)[I70] (NXT) =REEN). When the object is
received, it will be stored using that name.

2. On the sender, enter the ae of ae variable or directory to be

same directory, you can oe a ae of marbles and SEND them all
at once.)

3. To transfer additional variables or lists\of variables, repeat the
previous two steps.

To transfer data using the local/server configuration:

1. On the HP 48 that will be the server, execute SERVER ({p>)[1/0] or

620 33: Transferring Data to and from the HP 48

2. On the other, “locally controlled” HP 48:

w To send a file to the server, enter the variable name and

a different name, or to send several variables from the same
directory, use a list argument as described on page 616.)

= To receive a file from the server, enter the variable name and

stored locally using a different name, or to receive several
variables together, use a list argument as described on page
616.)

3. To transfer additional variables or lists of variables, repeat step 2.

4. To end the session, execute FINISH ((4)(1/0) &
locally controlled machine.

Transferring Data between a Computer and
the HP 48

There are many reasons to transfer information between a computer and
your HP 48 — you might want to back up all of your calculator’s user
memory; you might want to edit a calculator program on your computer;
or you might want to write a program on your computer and then run it
on your calculator. Whatever the reason, the first step involves making a
physical connection.

Cable Connection

Before transferring data between a computer and your calculator, you
must connect the HP 48 to the computer via the serial cable in the Serial
Interface Kit for your computer. (If you need information on what Serial
Interface Kit is right for your computer, or if you don’t have an Interface
Kit, see your HP dealer.)

1. Connect the computer end of the serial cable to the serial port on
the computer. (If you need instructions for this, consult your
computer documentation.)

33: Transferring Data to and from the HP 48 = 621

2. With the calculator right-side up and the HP logo on the cable
connector facing up, connect the cable to your calculator. You
should feel the connector lightly snap into place.

Not quite flush

Note that when the cable is fully connected, the case around the

connector is not quite flush with the calculator case.

Transferring Data

Before peolnn nat the transfer:

ws Select ASCII or Binary transmission sede sacs pressing

SI aE. (See page 629 for guidelines on selecting the mode to

matches the rate expected by the eeanit program running on

the computer.

= Set the HP 48 parity by pressing PARIT
parity expected by the Kermit program running on the
computer.

= Set the checksum (CKSM) — Riley 1 is the fastest — and set the

character translate code (TF
guidelines on what translate eade: acting. to use.)

622 33: Transferring Data to and from the HP 48

2. On both the HP 48 and the computer, switch to the directory where
the variables (files) are located and to the directory to which you
want the variables (files) sent.

3. Open the HP 48 serial port by executing OPENIO ((4)(i/0)
QPENT). This step is not necessary for most connections, but it will
prevent difficulties caused by the inability of certain devices to
communicate with a closed port.

4. Run the program on the computer that implements Kermit
protocol. If you are transferring data in binary mode, and if the
Kermit program on the computer has a binary mode setting
command, you should execute it on the computer.

To transfer data using the local/local configuration:

1. On the receiver, issue the “receive” command:

m If the HP 48 is the receiver, execute RECV (([4){1/0)
-REEYV),or enter a le name and execute RECN

((a) (120) (NXT) [RECN).
= If the computer is fae receiver, issue the command on the

computer to receive a file.

2. On the sender, issue the “send” command:

w If the HP 48 is the sender, key in the argument (variable name
or variable list as described on page 616) and execute SEND
(fq)(/0) «SEND).

w If the computer is the sender, issue the command on the
computer to send a file.

3. To transfer additional variables or variable lists, repeat steps 1 and
2.

4. Optional: To conserve battery power, execute CLOSEIO ([(4)
LOSE) when finished.

33: Transferring Data to and from the HP 48 623

To transfer data using local/server configuration:

1. If your computer will be the server, make sure it is able to execute

the Kermit “server” command.

2. Set server operation on the device that will act as server:

= If the HP 48 is to act as server, execute SERVER ({p*) [I/O] or

[H)(70) SERV).
= If the computer is to act as server, execute the command on the

computer to make it the server.

3. On the locally controlled device:

= To send a file to the server, issue the appropriate “send”

command. (See “SEN” on page 614 if the HP 48 is the

sender.)

= To receive a file from the server, issue the appropriate ° ‘get”

command. (See KGET on page 615 if the HP 48 is the
receiver.)

4. To transfer additional variables, repeat step 3.

5. To end the session, execute the “finish” command on the locally
at aeanane (If the HP 48 is locally controlled, press

Backing Up All of HP 48 Memory

The ARCHIVE and RESTORE commands provide the ability to back up

all variables, user key assignments, and alarms in calculator memory onto

your computer.

624 $33: Transferring Data to and from the HP 48

To backup all of user memory:

1. Follow the instructions in “Before Beginning the Transfer” on page
622.

2. Enter the object : 10:name, where name is the file name that will
contain backed up memory. For example, : 10: AUG1 will back up
memory into a file named AUGI.

3. Issue the Kermit RECEIVE command on the computer.

4. Execute ARCHIVE ({4)) (MEMORY) [NXT] [NXT] HRCHT) to send
the data to the PC. (Regardless of the ASCII /binary setting,
ARCHIVE uses binary transmission.)

To copy backed up user memory into the HP 48:

uy Use the RESTORE command with care; restoring backed
: up user memory completely erases current user memory

Caution and replaces it with the backup copy.

1. Follow the instructions in “Before Beginning the Transfer” on page
622.

2. Transfer the computer file to the HP 48 the same way you transfer
any other file.

3. Place the name of the file on the stack (for example, 'AUG1') and
press [->]([RCL). This recalls Backup HOMEDIR to level 1.

4. Execute RESTORE ((4))[MEMORY] [NXT] [NXT] RESTO).

If you want your current flag settings archived when you back up all of
memory, execute RCLF and store the result in a variable before you
archive memory. Then, after you archive and restore memory, you can
recall the contents of the variable and execute STOF to make the flag
settings active again.

33: Transferring Data to and from the HP 48 625

Character Translations (TRANSIO)

The HP 48 character set contains certain characters that cannot be
displayed using most computer software packages. These characters fall
into two groups:

= Characters with “character numbers” in the range 128 through 159
cannot be displayed without special software designed to support the
HP 48.

w Characters with character numbers in the range 160 through 255 can
be displayed by computer software that supports the ISO 8859
character set.

The translate code lets you choose what happens to these characters when
they are transmitted from the HP 48 to a computer. You set the translate
code using the TRANSIO command. (See “TRAN — in the table on page
618 for a description of the four translate codes.)

The following table shows the conversions for many of the characters with
numbers above 127. For characters not in the table, the conversion is to
‘20x, where 0 is the three-digit character number.” This conversion
makes it possible for you to use your computer editor to type and display
these characters.

* You can also use this conversion for characters in the table and for characters 0 through
127, making it easier to edit in control characters or in an escape sequence on your
computer. The HP 48 will not generate the xxx sequences, but it will recognize them.

626 33: Transferring Data to and from the HP 48

1/O Character Translations

Char. HP 48 Char. HP 48
Number | Char. Number | Char.

128 7% \<) 147 E \Ge

m2 - + f | RwxMA@&a FMS a &

To avoid any ambiguity during translation and reverse translation:

mw When data is transferred from the HP 48 with a translate code of 2 or
3, any occurrence of the ». character is replaced by \~. For example,
A\->B is translated to A*\—>B. This prevents the reverse
translation to A+E when the data is transmitted back to the HP 48.

33: Transferring Data to and from the HP 48 627

m= When data is transferred to the HP 48 with a translate code of 2 or 3,

character sequences beginning with ~ are unchanged unless any of

the following:

= They match a sequence in the table.

m The * is followed by three decimal digits in the range 000
through 159 for translate code 2.

m The ‘ is followed by three decimal digits in the range 000

through 255 for translate code 3.

For example, Ga and *215 are translated to « and x,
respectively, but “Gx and \267 are not translated.

More About File Names

In general, the file naming conventions for computers are different than

the name requirements for HP 48 variables. When a file is transferred

from a computer to the HP 48, the following difficulties may arise due to

the computer file name:

m The file name contains characters not allowed in a variable name —
for example, AB# or CABC}. In this case, the HP 48 terminates the

transfer and sends an error message to the computer.

w The file name matches a built-in command—for example, SIH or

DUP. In this case, the HP 48 appends a number extension to the

name—for example, SIN. 1.

= The name matches a variable name in the current directory. In this

case, to avoid overwriting your variable a number extension is added

to the name. (However, if flag —36 is set, the variable will be

overwritten.)

Also, an HP 48 file can have a name that is incompatible with the name

requirements of the computer software. Transferring such a file can

result in a transfer error.

Always check the filenames before a transfer to make sure they are

compatible with the receiving system’s requirements. If they are not

compatible, change the names appropriately.

628 $33: Transferring Data to and from the HP 4&8

Errors

Executing the KERRM command ([*)[1/0} 'RERK) displays the
text of the most recent Kermit error packet.

ASCII and Binary Transmission Modes

The HP 48 Kermit protocol provides two transfer modes— ASCII and

Binary. To get the fastest transfers, you generally should use Binary mode
to transfer data from one HP 48 to another, and ASCII mode to transfer

data between the HP 48 and a computer.

A receiving HP 48 treats all files as ASCII unless they match the special
encoding generated for HP 48 binary files. The calculator will
automatically switch to binary receive mode for files with this encoding.

ASCII Mode. You must use ASCII mode if you want to display, edit, or
print your HP 48 file using a computer.

When data is sent from the HP 48 to a computer in ASCII mode:

= The data is converted from its internal HP 48 format to a sequence of

characters.

w If the translate code is set to 1, 2, or 3, all line-feed (LF) characters
are converted to carriage-return/line feed sequences (CR/LF).

= If the translate code is set to 2 or 3, some or all of the characters with

character numbers greater than 127 are translated into displayable
character sequences.

ms The character sequence %%HP! modes ; is added at the beginning
of the data, where modes is a series of characters that describes

certain calculator mode settings — the translate, angle, and fraction-
mark settings — when the transfer occurred. When this sequence is
present, you don’t have to set the corresponding modes on the
receiving HP 48 when you send the data back.

When data is received by the HP 48 using ASCII mode:

m The data is translated (compiled) into the HP 48 internal format.

= If the translate code is set to 1, 2, or 3, all CR/LFs are converted to

LFs.

33: Transferring Data to and from the HP 48 629

= So that the receiving calculator can accurately reconstruct the object

being sent by the computer, any modes specified at the beginning of

the data are set temporarily in the calculator for the duration of the
transfer. If a mode is not specified, the receiving calculator uses its
current mode setting.

If you created data (a program, for instance) on your computer, or if

you substantially changed data that originally came from your

calculator, you may need to include at the beginning of the data the

characters “%HP: modes ;, where modes is a series of

characters—T(), A(), and/or F()— representing the translate code,

angle mode, and/or fraction mark. Inside the parentheses are the

characters you choose:

= T (translate code) can be followed by 0 (no translation), 1
(translate CR/LF to LF and vice versa), 2 (translate CR/LFs and
character numbers 128 through 159), or 3 (translate CR/LFs and

character numbers 128 through 255).

w A (angle mode) can be followed by D (degrees), R (radians), or

G (grads). If the data contains an angle in degrees, radians, or

grads, you should include A(D), A(R), or A(G), respectively.

ws F (fraction mark) can be followed by . (period) or , (comma). If

it differs from your calculator’s setting, the fraction mark used in

the data being sent should be included by F(.) or FG).

For example, at the beginning of the data the sequence ““HP:ACD>

will cause the angle mode to be set to degrees during the transfer;

““HP:s TC22ACGIFC, > will cause the translate code to be set to 2,

the angle mode to be set to grads, and the fraction mark to be set to

comma.

A translate code of T(1) is the normal requirement (and also the

system default). You should use T(2) or T(3) only when characters in

their respective ranges are being translated according to the table on

page 618. You should use T(0) only for string objects, or objects
containing string objects, where the string contains binary data.

630 $33: Transferring Data to and from the HP 48

Binary Mode. In Binary mode, no character conversions are performed.
Therefore, the files received from the HP 48 cannot be displayed by the
computer. However, if data is being transferred for backup purposes
only, Binary mode may be preferable because it is faster, since the data
does not require as much processing.

The HP 48 automatically uses Binary mode when transferring libraries,
transferring backup objects, or archiving all of user memory.

Sending Commands to a Server shiek

The PKT command ((«)(1/0) (NXT) =
and receive data other than HP 48 ee a remote server. It is
particularly useful for sending Kermit commands — for example,
Directory (D) or Erase (E).

The PKT command takes two string arguments from the stack — the data
field of the packet in level 2, and the packet type in level 1. For example,
executing the sequence "BD" "G" PKT sends a request for a directory
listing.

A server issues one of the following responses to the PKT command:

= An acknowledging message, which is returned to stack level 1.

= Anerror packet. The HP 48 briefly displays the contents of the error
packet Tt can be retrieved by executing KERRM ((4)[1/0} [NxT)

33: Transferring Data to and from the HP 48 631

Serial Commands

When using the commands described below to transfer
data to or from an HP 48 at 9600 baud, make sure the

Caution ticking clock is not in the display. If the clock is in the
display, it may interrupt a transfer or corrupt the data

being transferred. The clock display is described on page 439 in
chapter 24, “Time, Alarms, and Date Arithmetic.”

Serial 1/O Commands

Keys | Programmable Description
Command

[4)(1/0] (page 3):

Sends a string in level 1 without Kermit
protocol. Once the entire string is
sent, a 1 is returned to level 1; if the
entire string failed to transmit, a @ is
returned to level 1 and the unsent part
of the input string is returned to level
2. Execute ERRM to see the error
message.

632 33: Transferring Data to and from the HP 48

Serial 1/O Commands (continued)

Programmable Description
Command

Receives x characters (argument x is
taken from level 1). The characters
are returned as a string to level 2,

along witha 1 (successful receive) or
@ (unsuccessful receive) to level 1. If
the input buffer contains fewer than x
characters, the HP 48 will wait the
number of seconds specified by the
STIME command (the default is 10
seconds). (If the level 2 number
returned by the BUFLEN command

argument for SRECV, no waiting will
occur because x will exactly match the
number of characters in the input
buffer.) In the event of an
unsuccessful receive, executing
ERRM returns the error message
associated with the failure.

Sets the serial transmit /receive
timeout to x seconds (argument x is
taken from level 1). The value for x
can range from 0 to 25.4 seconds. If 0
is used, no timeout will occur (which
could result in excessive battery
drain).

Sends a serial BREAK.

33: Transferring Data to and from the HP 48 633

Serial 1/O Commands (continued)

Programmable Description
Command

BUFLEN Returns the number of characters in
the HP 48 input buffer to level 2, along
witha 1 (no framing error or UART
overrun) ora @ (framing error or
UART overrun) to level 1. Ifa Gis
returned, the number of characters
returned to level 2 represents the part
of the data received before the error.
Therefore, that number can be used to

determine where the error occurred.

a Even though XMIT, SRECV, and BUFLEN check the send
- and receive mechanisms, the integrity of the data is not

Note checked. One method to insure that the data sent is the
same as the data received involves appending a checksum

to the end of the data being sent, and then verifying that checksum at the
receiving end.

XMIT, SRECYV, and SBRK automatically open the IR/serial port using
the current values of the first four JOPAR parameters (baud, parity,
receive pacing, and transmit pacing) and the current IR /wire setting (set

using 9TRZJin the 1/O SETUP menu).

634 33: Transferring Data to and from the HP 48

34

Using Plug-in Cards and Libraries

This chapter covers:

w The types of memory and plug-in cards.

w Installing and removing plug-in cards.

= Using RAM cards to expand user memory or to back up data.

= Using application cards and libraries.

Types of Memory

Plug-in cards increase the amount of HP 48 memory. The HP 48 has two
types of memory:

u Read-only memory, or ROM, is memory that cannot be altered. The
HP 48 has 256K bytes of built-in ROM that contains its command set.
You can expand the amount of ROM by installing plug-in application
cards.

ms Random-access memory, or RAM, is memory you can change. You
can store data into RAM, modify its contents, and purge data. The
HP 48 contains 32K bytes of built-in RAM. You can increase the
amount of RAM by adding plug-in RAM cards.

34: Using Plug-in Cards and Libraries 635

Installing and Removing

The HP 48 has two ports for installing plug-in cards, designated port 1 and
port 2. Port 1 is closest to the front of the calculator; port 2 is closest to
the back. Cards can be installed in either port.

iy The calculator must be turned off while you are installing
. or removing plug-in cards. Otherwise, all of user

Caution memory could be erased.

Also, whenever a card is installed or removed, the HP 48 executes a
system halt, causing the contents of the stack to be lost.

To install a plug-in card:

1. If you are installing a new RAM card, first install its battery (see
“Installing the Battery in a New RAM Card,” page 639) and set the
write-protect switch to the desired position (see “Setting the Write-
Protect Switch” on page 641).

2. Turn off the calculator. Do not press until you’ve completed the
installation procedures.

636 34: Using Plug-in Cards and Libraries

3. Remove the port cover at the top of the calculator by pressing down

against the grip area and then pushing in the direction shown.
Removing the cover exposes the two plug-in ports.

4. Select an empty port for the card— either port may be used.

5. Position the plug-in card as shown. The triangular arrow on the
card must point down, toward the calculator. Make sure the card is
lined up properly with a port opening and not positioned half in one
port and half in the other.

6. Slide the card firmly into the port until it stops. When you first feel

resistance, the card has about '/,” to go to be fully seated.

7. If desired, repeat steps 4 through 6 for another card.

8. Replace the port cover by sliding it on until the latch engages.

34: Using Plug-in Cards and Libraries 637

9. If the card is a RAM card, you must decide how you want to use it
(see page 642):

= If you want to use the RAM card to increase user memory,
execute the MERGE command as described on page 643.

= If you want to use the RAM card as independent memory,
execute the MERGE command as described on page 643 and
then the FREE command as described on page 649.

To remove a plug-in card:

uy If the plug-in card you want to remove is a RAM card that
contains merged memory, you must free the merged

Caution memory before removal. Failure to do so would
probably result in loss of data stored in user memory.

See “Freeing Merged Memory” on page 649 for instructions.

1. Turn off the calculator. Do not press until you’ve completed the
removal process.

2. Remove the port cover.

3. To remove a card, press against the grip as shown and slide the card
out of the port.

4. Replace the port cover.

638 $$$ 34: Using Plug-in Cards and Libraries

RAM Cards

RAM cards let you increase the amount of RAM in your HP 48. Each
card contains a battery that preserves its contents when the calculator is
off or when the card has been properly removed from the calculator.

RAM cards are good tools for:

uw Expanding user memory.

= Backing up or hiding important data.

ws Exchanging data between two HP 48 calculators.

= Storing prototype application programs that will eventually be sade
into ROMs.

“Uses for RAM Cards” on page 642 covers these tasks.

Preparing the Card for Installation

Installing the Battery in a New RAM Card. Before a new RAM
card is installed, the battery that came with it must be installed in the
card.

My Do not use this procedure for replacing a battery ina
RAM card — it could cause loss of memory in the RAM

Caution — card. Appendix A contains instructions for replacing
RAM card batteries on page 663.

34: Using Plug-in Cards and Libraries 639

To install the battery in a new RAM card:

41. Remove the battery holder from the card by inserting a thumbnail
or small screwdriver into the groove and pulling in the direction
shown.

2. The grooved side of the battery holder is marked with the + symbol
and the word UP. Insert the battery into the holder with its + side
up, and then slide the holder into the card.

640 £34: Using Plug-in Cards and Libraries

3. Write the date of installation on the card using a fine-point,

permanent marker. The date is important for determining when to

replace the battery.

Battery orientation
symbol

Write installation

date here

| Write contents
r— here

4. Set an alarm in the calculator for 1 year from the date of installation

to remind you to replace the battery. (Depending on the use, the

battery should last between 1 and 3 years. When the battery needs

replacing, a display message will appear if the card is in the

calculator. You are setting this alarm in case the card is not in the

calculator when the battery gets low.) Setting alarms is covered in

chapter 24, and replacing RAM-card batteries is covered in

appendix A.

Setting the Write-Protect Switch. The write-protect switch lets you

protect the contents of the RAM card from being accidentally overwritten

or erased. The switch has two positions:

s Read-only. The contents of the RAM card can be read, but cannot

be changed or erased.

= Read/write. You can write information to the RAM card and erase

its contents.

34: Using Plug-in Cards and Libraries 641

wy) To avoid loss of user memory:

m Always turn off the calculator before changing the
Caution write-protect switch on an installed card.

= Do not write protect a RAM card containing merged
memory; the memory should be freed first (see page 649).

You can operate the write-protect switch while the card is installed;
however, the switch labels are not visible.

Read only setting

Read / Write setting

Back side of card

Uses for RAM Cards

A RAM card can be used in one of two ways:

m It can be merged with built-in memory. This enables you to expand
the amount of user memory available (up to 288K bytes) for creating
variables and directories, putting objects on the stack, etc.

= It can provide a place independent of user memory in which to back
up important data. You can copy individual objects or entire
directories to a RAM card in much the same way as you would back
up computer files to a disk. After you’ve copied the data, you can
remove the card and store it in a safe place, or, as a way of
transferring data, install the card in another HP 48.

642 334: Using Plug-in Cards and Libraries

You can install one or two RAM cards, and you can use either or both of

them for either purpose. However, you cannot use a single card for both

merged and independent memory at the same time.

The following diagram illustrates a system containing two RAM cards—

one containing merged memory and the other containing independent

memory.

Built-in
memory

User

emo
7 Y Plug-in Merged

RAM card] | memory

ee Independent
card memory

Using RAM Cards to Expand User Memory
(Merged Memory)

Before you can use an installed RAM card to expand user memory, you
must execute the MERGE command to merge its memory with built-in
memory.

Before you execute the MERGE command, the write-protect switch on
the RAM card must be in the read/write position. (See page 641 for how
to set the write-protect switch.)

MERGE takes a port number as its sl For example, the
‘keystrokes 1 [;][MEMORY)] [NXT] [NXT] MERG merge the plug-in
memory installed in port 1 with built-in MEMO.

34: Using Plug-in Cards and Libraries 643

Total
user

memory MERGE

—_—_—> Total
user

memory

When you merge a RAM card that contains backup objects, those objects
are moved to a special port, called port 0. (See page 647 for a description
of port 0.)

w You should never remove a RAM card that contains
merged memory. Doing so will cause loss of data stored

Caution —_in user memory. Before you can remove the RAM card,
you must free the merged memory. (See “Freeing

Merged Memory” on page 649 for instructions.) If you accidentally
remove a card with merged memory and see the message
Replace RAM, Press ON, youcan minimize memory loss by
leaving the calculator on, reinserting the card in the same port, and
then pressing [ON].

Using RAM Cards for Backup (Independent
Memory)

The HP 48 uses a special object type, the backup object, to store backed-

up data. A backup object contains another object, its name, and its

checksum. Simply put, a backup object contains a variable or directory
and its checksum.

644 34: Using Plug-in Cards and Libraries

An independent-memory RAM card that contains the backup objects can

be removed from the HP 48 and either stored for later use or transferred

to another HP 48.

Backing Up Objects into Independent Memory

Backup objects can exist:

m In independent memory (port 1 and/or port 2).

s Ina portion of user memory called port 0 (see page 647).

To create a backup object, execute the STO command with two
arguments — the object to be backed up in level 2, and a backup identifier

in level 1. A backup identifier has this form:

: port# : name

where port# is the port number (0, 1, or 2) and name is the name under
which the backup copy will be stored.

Example: Backing Up a Program. To back up a program named
PG1 into independent memory in port 1, recall the program to the stack
by evaluating the sequence 'PG1' RCL, and then store the object as a
backup object in port 1 by evaluating '1:PG1 STO.

sel 'PG1' RCL LPCU | pais
memory a PG1 sd PURGE

x ae
Independent
memory

(port 1)

The backup object in the previous example happens to have the same
name as the original object, but the two names could be different.

Note that a directory and its subdirectories can be backed up in a single
backup object.

34: Using Plug-in Cards and Libraries 645

Example: Backing Up a Directory and Its Subdirectories.
Suppose your HOME directory contains a subdirectory named CHEM,
which in turn contains several subdirectories. To back up the entire
directory structure of CHEM in a backup object named BCHEM, recall
the directory to the stack by evaluating the sequence 'CHEM' RCL, and
then store it in the backup object by evaluating :1:BCHEM STO.

Accessing Backup Objects

You can recall, evaluate, and purge the contents of backup objects. You
can also obtain a listing of all the backup objects in a given port.

Recalling Backup Objects. The LIBRARY menu can be used to
recall the contents of backup objects. Pressing (#)(LIBRARY] followed by

‘ORT@, PORT!, or PORES displays a menu of backup objects and
libraries 3 in that port. To recall the contents of a backup object to the
stack, simply press {->] and then the menu key for the desired backup
object.

The RCL command can also be used to recall the contents of a backup
object to the stack. For example, evaluating the sequence
:1:BPG1 RCL recalls the object stored in 1:BPG1.

Evaluating Backup Objects. To use the LIBRARY menu to
evaluate the contents of a backup object, press [€;)[(LIBRARY) followed by
PORTS, FOREL RE. Then, simply press the menu key for the
desired backup object.

Also, when the argument of EVAL is a backup name, the contents of the
backup object is evaluated. For example, executing the sequence
:1:6PG1i EVAL evaluates the program stored in backup object 1:BPG1.
(EVAL also takes a list of backup objects as its argument to evaluate
more than one at a time.)

Purging Backup Objects. To purge a backup object, use the backup
name as the argument of PURGE. For example, executing the sequence
:1:BPG1 PURGE purges the backup object. (PURGE can take a list of
backup objects as its argument to purge more than one at a time.)

646 34: Using Plug-in Cards and Libraries

Using Wildcards to RCL, EVAL, and PURGE. The character %

can be used as a wildcard to replace the port number in the arguments

used by RCL, EVAL, and PURGE. (& is the left-shifted alpha key above

(ENTER).) When the HP 48 encounters the wildcard with these

commands, it searches port 2, 1, 0, and then main memory for the

accompanying backup object (the first occurrence of the name is used).

For example, evaluating the sequence :&!BPG1 PURGE causes the HP

48 to search port 2, 1, 0, and then main memory for the first occurrence of

BPG1 and then delete it.

Listing Backup Objects. The PVARS command ([4)] [MEMORY]

PYAR) can be used to display a list of objects in the specified

port. It takes as its argument a port number 0, 1, or 2. It returns to level

1 the type of memory contained in the port ("ROM", "SYSRAM", ora

number representing the amount of free independent RAM); and to level

2 it returns a list of backup objects and library identification numbers

(both tagged with the port number).

Also, you can use the LIBRARY menu to display a menu of backup

objects in a given port. Simply press (4))(LIBRARY] followed

by PORTG ¥1, or PORTS to see the desired menu.

Backing Up Objects into User Memory (Port 0)

The HP 48 lets you create backup objects in user memory. The portion of

user memory used for backup objects and libraries is called “port 0.”

There are several reasons you might want to back up data into user

memory:

= You want to “hide” data; that is, you want certain data to be in user

memory, but you don’t want the variable(s) to appear in any

directory.

= You want to “free” a RAM card being used for merged memory, and

instead use it for independent memory. (See “Freeing Merged

Memory” on page 649).

You create a backup object in user memory the same way you create

other backup objects, except you specify port 0 as the port number.

34: Using Plug-in Cards and Libraries 647

'NUML' RCL
ue @:NUM1 STO nein PURGE

memory ea

Port 0

The size of port 0 is dynamic— it grows and ia to accommodate its
contents.

Backing Up All of Memory

The ARCHIVE command ([*)[MEMORY] [NXT] [NXT] ARCH) creates a
backup object named :port#: name in independent memory containing
a copy of:

w The entire HOME directory.

= User key assignments.

a The alarm catalog.

It takes a name tagged by a port number (0, 1, or 2) as its argument. For
example, executing the sequence '2:JUN12 ARCHIVE creates backup
object :2: JUN12.

The RESTORE command (([4)[MEMORY] (NXT] (NXT) RES?
the data backed up by the ARCHIVE command. It, too, Taked: a name
(where the corresponding object is a directory) tagged by a port number
as its argument. For example, executing the sequence
:2:JUN12 RESTORE retrieves the HOME directory backed up above.

Executing RESTORE overwrites the entire contents of
user memory with the contents of the backup object.

Caution

648 $$®34: Using Plug-in Cards and Libraries

If you want your flag settings to be saved when you back up all of memory,

recall them to the stack (using RCLF) and store them in a variable before

executing ARCHIVE. After you RESTORE memory, you can reactivate

the flag settings by recalling the contents of that variable to the stack and

executing STOF (store flags).

Freeing Merged Memory

Freeing merged memory converts it to independent memory. Merged

memory must be freed if:

= You want to remove the RAM card from its port.

= You want to use the RAM card as independent memory, rather than
user memory.

merged memory in a specified port. It takes two arguments — a list in

level 2, and the port number in level 1.

The list can be empty, in which case the merged memory is simply freed,

or it can contain one or more names or library identifiers. If the list is not

empty, FREE moves the named backup objects and libraries from port 0

into the newly-freed card. For example, executing the sequence
£ NUM1 ADDS 3 1 FREE frees the merged memory in port 1 and

makes it independent memory. At the same time, the backup objects

NUM1 and ADD3 in port 0 are moved to port 1.

34: Using Plug-in Cards and Libraries 649

To free merged memory, first execute MEM to determine the amount of
available memory (press [4)(MEMORY) — HEM). If the amount of
available memory is greater than or equal to the amount of memory on
the card you are going to free, you are ready to execute the FREE
command.

If MEM returns a value less than the amount of memory on the card,
executing FREE without any preparation would return an error, since
your stored data would not fit into the amount of user memory remaining
after the merged memory was freed. To avoid an error, you can do any of
the following:

= Purge unneeded variables from user memory.

= Back up data into another RAM card installed in the other port and
then purge the original variables.

= Back up data into port 0 (built-in memory) and then use the level-2
argument of the FREE command to move that data into the freed
memory. Here’s a step-wise procedure for doing this:

1. Determine the amount of data that must be moved into the
memory that you'll be freeing. For example, if you'll be
removing a 128K RAM card, and the amount of user memory
available is 126K, you must move at least 2K of variables.

'V Back up the variable in port 0. For example, to back up CALCI
into port 0, recall its contents to the stack and execute
:@2CALCI STO.

Purge the variable from user memory (for example,
'CALC' PURGE).
If necessary, back up and purge additional variables and
directories.

=

=

5. When you’ve backed up enough data, you are ready to execute
the FREE command. The level-2 argument must be a list
containing the names of the variables and directories you’ve
backed up into port 0.

650 34: Using Plug-in Cards and Libraries

Using Application Cards and Libraries

A library is an object that contains named objects that can act as an
extension to the built-in command set. You cannot view or change the
contents of a library. Libraries can exist in application cards, or they may
be copied into RAM. However, libraries cannot be created by the HP 48.

Libraries are identified by:

u A library identifier, which has the form :port#:library#. The
library# (library number) is a unique number associated with the
library. The library identifier is used as the argument of commands
that work with library objects.

m The library name, which is a sequence of characters. The library
name appears in the LIBRARY menu when the library is attached to
a directory on the current path.

Attaching a Library to a Directory

To use a library, it must be attached to a directory in user memory. The
attachment may happen automatically when you install an application
card, or you may have to do it yourself. Consult the owner’s
documentation accompanying your application card (or RAM-based
library) for information about attaching the library.

If the library is not attached automatically, you must use the ATTACH

a library number as its argument.

This is no limit on the number of libraries that can be attached to the
HOME directory. Only one library at a time can be attached to a
particular subdirectory.

34: Using Plug-in Cards and Libraries 651

Accessing Library Operations (The LIBRARY Menu)

The LIBRARY Menu. Pressing (4) (LIBRARY) displays the LIBRARY
menu, which contains the names of the libraries on the current directory
path. To display a menu of the operations in a library, press the
appropriate key. For example, if you have the HP Solve Equation Library

installed in your calculator, pressing (4)(LIBRARY) EGET displays a
menu of all the operations in that library.

Accessing Libraries Attached to Subdirectories. The rules for
accessing libraries attached to various subdirectories are the same as the
rules for accessing variables in those directories. For example, suppose
your HP 48 has the following directory structure and attached libraries:

es es es ee :
HOME PROG M EQUN G Library A _—_ Library B

PROG FNCT MATH STAK Library C

MATH ARAY TRG A Library D

When HOME is the current directory, pressing (+) (LIBRARY] displays the
menu of its attached libraries— ft , When PROG is the
current directory, pressing (=)(LIBRARY) displays a menu of its attached
mini Pagal as well as the other libraries on the current path,

Like variables, library operations can be accessed if the library is attached
to the current directory or to a directory in the current path. For
example, since libraries A and B are attached to HOME, their operations
can be accessed from any directory. You can access the operations in
library C when PROG or MATH are the current directory. However, you
cannot access the operations in library D when PROG 1s the current
directory.

652 34: Using Plug-in Cards and Libraries

Additional Commands That Access Libraries

Library Commands

Programmable Description
Command

STO Stores a library object from level 2 into
independent memory in the port
specified in level 1.

Takes a library identifier
(: port#: library#) as its argument and
recalls the specified library to the stack.

Takes a library identifier
(: port#: library#) as its argument and
purges the specified RAM-based
library.

[+] [MEMORY] (page 2):

PYARS PVARS Takes a port number as its argument
and displays a list of the backup
identifiers and library identifiers in the
specified port.

LIBS” Displays a list containing the names,
library number, and port number of all
the libraries attached to the current
directory.

Takes a library number as its argument
and attaches the specified library to the
current directory.

Takes a library number as its argument
and detaches the specified library from
the current directory.

34: Using Piug-in Cards and Libraries 653

oh 1S Bey NRE —ecicenigia
hn) _

° ’ 7 a Lm
; —

ze :

¢ - ,
. Ay Yiinds 70 ee els orca | | a ee ‘ 1. J 7 te ot A Le ae ee

@ 2 <A a»? ie Sees. - a herr oe ee 2. tt ve nt P Px: ;

> _

7 i ; 7 : 2 P bd
] . nae a 6; : > Sa => a, - 7 2 i : + vee 8) | —) +! Pro LISS? Gore, Pemgiea lean aS

a ee ny Af wt’ %e : haltevers Alc eee? Be‘ lew a ap? = 7

! ’ 7 a * am ¥, —_ 7 Cae D SR LSP es eee re) dpe Fab Lee ee roe bi we
4. : a. ;

gf * SF : pane : La 7 +33 = 7
» oa © Ie mye ied .

- mas - : ' nee ? ve eal cal a —— ont od ah vs ebncet! am

® 4 7 a - om
am DT. t » ! 1 hes an! % se 7

(dys: : MS ra wo 4 +) al a > \

: — ® -
7 T y ee pS a! of keene a af \ i

eo. ;] ee i oe: | es 44
.

; “4 2 UD ic FS OOS" thet @ i, 3 “A — é Lf]
om e A a¢ = ~ Eo OF a

>} pat =
ae ¢ ° Nets 7 ~ ied as —_" A %; om 7 s 2% ton hn é,

: ; j ire wee if 6 ba?
: =e “5. area PY aoe :

. ioue oe. 2 e+ bs 7
ote .v * Pos ® ar * ‘

-_ ad aT ° Soe - ; a yaaa” Sh” BS }
im, é bal os e - 7 «@

of a s We ’ " ' ae | ’ .

oe ‘
Ps

.

: e © ad ae, tw

; v
te § 6. y «

= panel a = ay

_ Sie = i > - ——~’ - * «©

@

‘ ¢ pare os -
P a? a 7 —_ @ - i¢ < t A ; - ‘ > «

1 a 3 Hi = : i Fei) * wi, 1
a ‘ tant may sa " :

7 » as Site - NE . ert: ; t ; ag @ en | i

| femelle 7, tess £4 a! i o a : é

2 : 74) a 7 hog se & ! a 2 .

[- ash oe ‘eeeeeyzes, ; r! ;
iter ' " - 1); »* g wre ee Dae 7

' 7S H7i, Sit ea'dy , GIP Y PSE E
» ¢ = > = 7 ae - — :

‘ . : > i . s - 7 ~- (= a U

j ye 7

earGc ¥ a
é

' - - 7c a s1" ! - - ‘ » i” 7@ ‘ = | A i J ; Te -_ iy 4 at © wT a us +

7 : 2 = : . 2 y 7 -

oe Pe aie aS “ee Oy a _
- @ SI :

‘ ’ wy 4 a

_ a J 7 = 7 c=

ds i6%2 : rf ai «s
Pad 7 . a

Pia? iv : a2 oa . : .
on 9 * ‘

Lad 8 se ~% e

S = @ e —_ ee }

Appendixes and Indexes

A

Support, Batteries, and Service

Calculator Support

You can obtain answers to questions about using your calculator from our
Calculator Support department. Our experience has shown that many
customers have similar questions about our products, so we have provided
the following section, “Answers to Common Questions.” If you don’t find
the answer to your question there, contact us at the address or phone
number on the inside back cover.

Answers to Common Questions

Q: The calculator doesn’t tum on when I press {ON). What’s wrong?

A: There may be a simple problem that you can solve immediately, or the
calculator may require service. See “Testing Calculator Operation” on
page 665.

Q: I’m not sure whether the calculator is malfunctioning or if I’m doing
something incorrectly. How can I verify that the calculator is operating
properly?

A: Refer to “Testing Calculator Operation” on page 665 in this appendix.

Q: The (+) annunciator stays on even when the calculator is turned off. Is
anything wrong?

A: This indicates a low-battery condition in the calculator or a RAM card,

or an alarm that is past due. To determine what is causing the (+)
annunciator to stay on, turn the calculator off and then on. A message in
the display will identify the problem. Refer to “Changing Batteries” in
this appendix (page 661) or to “Setting Alarms” in chapter 24 (page 443).

656 A: Support, Batteries, and Service

Q: How can I determine how much memory is left in the calculator?

A: Press [4] “MEM. The number of bytes of available
memory will appear at the lower right corner of the display. An empty
memory should show approximately 36004 (bytes of internal RAM).

Q: How do I clear everything from the calculator’s memory?

A: Perform the following steps:

1. Press and hold [ON].

2. Simultaneously press and release both of the outer keys in the top
row (the menu keys with A and F next to them).

3. Release (ON).

The calculator will beep andthe Try To Recover Memory? prompt
will be displayed. Press | HQ to clear user memory; the Memory
Clear message will appear in the display.

wt This procedure will not clear the contents of a plug-in
RAM card unless that RAM is merged with the calculator’s

Note main memory.

Q: How do I change the number of decimal places the HP 48 displays?

A: Perform the following steps:

1. Go to page 1 of the MODES menu: press [4] [MODES].

2. Press the number of decimal places you want (0 — 11).

3. Press the menu key for the display format you desire (_FIX ,

esemo MEN). —

Refer to “Display Modes” in chapter 2 (page 57).

A: Support, Batteries, and Service 657

Q: My numbers contain commas as decimal points. How do I restore

periods?

A: Perform the following steps:

1. Go to page 4 of the MODES menu (press

[<4] (MODES) [NXT] [NXT] [NXT]).
2. Press the “=f }W= radix toggle menu key. (The = should disappear

from the menu key.)

Q: What does an “E” in a number (for example, 2.51E — 13) mean?

A: Exponent of 10 (for example, 2.51 x 1074). Refer to “Display Modes”
(page 57) in chapter 2.

Q: When I take the sine of x in Degrees mode, why dolI get 'SINCw>!

instead of a number?

A: The calculator is in Symbolic Result mode; 'SIN¢1>' is the
symbolic answer. Press [p>)[+NUM] to convert 'SIH¢1>' to its
numerical equivalent of .0548... up to 11 decimal places. You can also

press S¥Me-
Results mode and prevent symbolic evaluation.

Q: What does “object” mean?

A: “Object” is the general term for all elements of data the HP 48 works
with. Numbers, expressions, arrays, programs, and so on, are all types of
objects. Refer to chapter 4, “Objects,” for a description of the object
types accepted by the calculator.

Q: What do three dots (...) mean at either end of a display line?

A: The three dots (called an ellipsis) indicate that the displayed object is
too long to display on one line. To view undisplayed portions of the
object, use the {<) or [>] cursor keys.

658 <A: Support, Batteries, and Service

Q: The calculator beeps and displays Bad Argument Type. What's
wrong?

A: The objects on the stack aren’t the correct type for the command you

are attempting. For example, executing SUNT (in page 2 of the PRG
OBJ menu) with a number in stack levels 1 and 2 causes this error.

Q: The calculator beeps and displays Too Few Arguments. What's
wrong?

A: There are fewer arguments on the stack than required by the
command you are attempting. For example, executing [+} with only one
argument or number on the stack causes this error.

Q: The calculator beeps and displays a message different from the two listed
above. How do I find out what’s wrong?

A: Refer to “Messages” in appendix B.

Q: I can’t find some variables that I used earlier. Where did they go?

A: You may have been using the variables in a different directory. If you
can’t remember which directory you were using, you'll need to check all
the directories in your calculator.

Q: Sometimes my HP 48 seems to pause for a few seconds during a
calculation. Is anything wrong?

A: Nothing is wrong. The calculator does some system cleanup from time
to time to eliminate temporary objects created from normal operation.
This cleanup process frees memory for current operations.

Q: During normal operation, the printer prints several lines quickly, then
slows down. Why?

A: The calculator quickly transmits a certain amount of data to the
printer, then slows its transmission rate to ensure that the printer can
keep up.

Q: How can I increase the printing speed of my HP 82240B Infrared
Thermal Printer?

A: Use an age adapter with your HP 82240B printer so that the printer
can print faster. Also, set the calculator delay to match the print speed
(see “Setting the Delay’ on page 607).

A: Support, Batteries, and Service 659

Environmental Limits

Calculator. To maintain product reliability, avoid getting the calculator
wet and observe the following temperature and humidity limits:

m Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: - 20° to 65°C (-4° to 149°F).

= Operating and storage humidity: 90% relative humidity at 40°C

(104°F) maximum.

Plug-In Cards. The environmental limits for Hewlett Packard plug-in
cards are:

= Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: —20° to 60°C (-4° to 140°F).

= Storage temperature for RAM card data retention: 0° to 60°C (32° to

140°F).

= Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

When to Replace Batteries

When a low-battery condition exists, the (-) annunciator remains on, even
when the calculator is turned off. When the calculator is turned on during
a low-battery condition, Warnima! LowBat< > is displayed for
approximately 3 seconds. LowBat ¢(P1> refers to port 1, LowBat ¢P2)
refers to port 2, and LowBat ¢S> refers to the calculator (system)

batteries.

Replace the RAM card battery or the calculator batteries as soon as
possible after the (-) low-battery annunciator and warning message
appear. If you continue to use the calculator while the (+) annunciator is

on, the display will eventually dim and you may lose calculator and RAM

card data.

660 #£A: Support, Batteries, and Service

Under typical use, a RAM card’s battery should last between 1 and 3
years. Be sure to mark the card with the battery-installation date, and, in
case the RAM card is not in the calculator when the battery needs
replacement, set an alarm for 1 year from that date to remind you to
install a fresh battery. RAM cards do not come with a battery installed.

Changing Batteries

Battery Types

Calculator Batteries. Any brand of size AAA batteries. Be sure that
all three batteries are of the same brand and type.

The use of rechargeable batteries is not recommended because of their
lower capacity.

Plug-In RAM Card Batteries. 3-Volt 2016 coin cell.

Changing Calculator Batteries

These instructions are for changing calculator batteries. The instructions
for replacing RAM card batteries start on page 663.

ui Whenever you remove batteries from the calculator, be
sure the calculator is off and do not press the key

Caution — until the new batteries are installed. \f you press
when batteries are not in the calculator, you may lose all

of calculator memory.

1. Turn the calculator off. You may lose memory in the calculator and
plug-in RAM cards if the calculator batteries are removed when the
calculator is on.

A: Support, Batteries, and Service 661

2. Have three, fresh batteries (of the same brand and type) at hand.
Wipe off both ends of each battery with a clean, dry cloth.

3. Remove the calculator battery-compartment door by pressing down
and sliding it off away from the calculator. Be careful not to press
the calculator’s key. Refer to the following illustration:

4. Turn the calculator over and shake the batteries out. Once the
batteries are out, you should replace them with fresh batteries
within 2 minutes to protect against memory loss.

rf Do not mutilate, puncture, or dispose of batteries in
tire. The batteries can burst or explode, releasing

Warning hazardous chemicals. Discard used batteries
according to the manufacturer’s instructions.

662 #£A: Support, Batteries, and Service

5. Avoid touching the battery terminals. Batteries are easier to install if
the negative (plain) ends are inserted first, and if the center battery
is installed last.

Position the batteries according to the outlines in the bottom of the
battery compartment. Refer to the following illustration:

6. Replace the battery-compartment door by sliding the tabs on the
door into the slots in the calculator case.

7. Press to turn the calculator on.

Changing a RAM Card Battery

1. Turn the calculator over and remove the plastic cover over the
plug-in card ports (on the display-end of the calculator).

A: Support, Batteries, and Service | 663

2. With the RAM card in port 1 or 2, turn the calculator on.

yy Since RAM cards run off the calculator batteries when
the calculator is (ON), you should replace a card’s battery

Caution = only when the card is in the calculator and the calculator
is turned on. RAM memory may be lost if you remove a

RAM card battery when the calculator is off, or when the card is not
installed in the calculator.

3. Place your index finger in the recess near the exposed end of the
RAM card — this prevents removal of the card from the calculator
when you remove the card’s battery holder. Now insert the
thumbnail of your free hand into the nail grip in the black plastic at
the left side of the end of the card and pull the battery holder out of
the card.

Nail grip

664 #£A: Support, Batteries, and Service

4. Remove the old battery from the plastic battery holder.

Uy Do not mutilate, puncture, or dispose of batteries in
fire. The batteries can burst or explode, releasing

Warning hazardous chemicals. Discard used batteries
according to the manufacturer’s instructions.

5. Install a fresh, 3- Volt 2016 coin cell in the plastic battery holder and
reinsert the battery holder (with battery) into the RAM card. Be
sure to install the battery with the side marked “+” toward the front of
the card.

6. Mark the card with the battery-installation date, and, in case the
RAM card is not in the calculator when its battery needs replacing,
set an alarm for 1 year from that date to remind you to change it.

7. Replace the plug-in port cover.

Testing Calculator Operation

Use the following guidelines to determine whether the calculator is
functioning properly. Test the calculator after every step to see if
operation has been restored. If your calculator requires service, refer to
page 674.

The calculator won’t turn on or doesn’t respond when you
press the keys.

1. Make sure that three fresh batteries are correctly installed in the
calculator.

2. If the display is blank, press and hold (ON); press and release
several times until characters become visible; then release [ON]. If
no characters appear in the display, the calculator requires service.

3. If a halted program won’t respond when you press [ATTN], try
pressing again.

A: Support, Batteries, and Service 665

4. If the keyboard is “locked,” perform a system halt as follows:

a. Press and hold [ON].

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

5. If the display appears garbled, perform a memory reset as follows:

a. Press and hold [ON].

b. Press and hold both of the outer keys in the top row (the
menu keys with A and F next to them).

c. Release all three keys.

The calculator will beep and display the message Try To
Recover Memory? at the top of the display. Press YES to
recover as much memory as possible.

If these steps fail to restore operation, the calculator requires service.

The calculator responds to keystrokes, but you suspect it’s
malfunctioning.

1. Run the self-test described in the next section. If the calculator fails
the self-test, it requires service.

2. If the calculator passes the self-test, you may have made a mistake
operating the calculator. Reread appropriate portions of the
manual and check “Answers to Common Questions” (page 656).

3. Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

666 $A: Support, Batteries, and Service

Self-Test

If the display turns on, but the calculator does not seem to be operating

properly, run the diagnostic self-test :

1. Press and hold (ON).

2. Press and release the second key from the right in the top row (the

menu key with E next to it).

3. Release [ON].

The diagnostic self-test tests the internal ROM and RAM, and

generates various patterns in the display. The test repeats

continuously until it is halted.

4. To halt the self-test, perform a system halt as follows:

a. Press and hold (ON}.

b. Press and release the third key from the left in the top row

(the menu key with C next to it).

c. Release (ON).

The empty stack display should appear.

The diagnostic self-test should be successfully completed before running

any of the tests described in the following sections.

If the self-test indicates an internal ROM or RAM failure Gf IROM OK

and IRAM OK are not displayed), the calculator requires service.

Keyboard Test

This test checks all of the calculator’s keys for proper operation.

To run the interactive keyboard test:

1. Press and hold [ON].

2. Press and release the third key from the right in the top row (the

menu key with D next to it).

3. Release (ON).

A: Support, Batteries, and Service 667

4. Press and release the second key from the right in the top row (the
menu key with E next to it). KBD1 will appear in the upper left
corner of the display.

Starting at the upper left corner and moving left to right, press each
of the 49 keys on the keyboard. If you press the keys in the proper
order and they are functioning properly, the calculator emits a
high-pitch beep at each press of a key. When the 49th key ((4))
has been pressed, the displayed message should change to KED1
OK.

If you press a key out of sequence, a five-digit hexadecimal number
will appear next to KBD1. Reset the keyboard test (do steps 1
through 3 above), and rerun the test.

If a key isn’t functioning properly, the next keystroke displays the
hex location of the expected and the received location. If you
pressed the keys in order and got this message, the calculator
requires service. Be sure to include a copy of the error message
when you ship the calculator for service.

To exit the keyboard test, perform a system halt as follows:

a. Press and hold (ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

668 # A: Support, Batteries, and Service

Port RAM Test.
The port RAM test non-destructively tests the ports and the installed
plug-in RAM cards. (Plug-in RAM-card memory is preserved.)

To run the port RAM test:

1.

2.

”

Check that a plug-in RAM card is properly installed in port 1
and/or port 2.

Verify that the switch on each card is set to the “read/write”
position:

Read only setting

Read / Write setting

Back side of card

Turn the calculator on.

Press and hold [ON].

Press and release the fourth key from the left in the top row (the
menu key with D next to it).

Release [ON].

A vertical line will appear at both sides and at the center of the
display.

A: Support, Batteries, and Service 669

7. Press and release [A].

RAM1 and/or RAMz2 will appear at the top left corner of the display
and the size of the corresponding plug-in RAM card (32K or
128K) will appear at the top right corner of the display. OK will
appear to the right of RAM1 and/or RAM2 when the port RAM
test has been successfully completed. A failure message (for
example, RAM1 &@002) will be displayed for each port that does
not contain a plug-in RAM card or if a card’s read/write switch is in
the “write-protect” position. This message should be ignored.

If OK does not appear for a RAM card set to read/write, the card
should be moved to the other port and the test rerun. IF OK still
doesn’t appear, the RAM card should be replaced with a new one.

To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold (ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release (ON).

The empty stack display should appear.

IR Loop-Back Test

This test checks the operation of the send and receive infrared sensors
and their associated circuits.

To run the IR Loop-Back test:

2.

3

670

Press and hold (ON).

Press and release the fourth key from the left in the top row (the
menu key with D next to it).

Release (ON); a vertical line will appear at both sides, and at the
center of the display.

Be sure that the plastic plug-in card cover is in place and that it
covers the clear lamp bulbs in the top end of the calculator.

A: Support, Batteries, and Service

5. Press (EVAL).

IRLB will appear at the top left corner of the display.

OK will appear to the right of IRLB if the calculator passes this test.

If OK does not appear, the calculator requires service.

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold (ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON].

The empty stack display should appear.

Serial Loop-Back Test

This test checks the operation of the send and receive circuits of the serial
interface at the top of the calculator.

To run the Serial Loop-Back test:

1. Press and hold (ON).

2. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

3. Release (ON); a vertical line will appear at both sides, and at the
center of the display.

4. Temporarily connect (short) the middle two pins (pins 2 and 3) of
the 4-pin serial connector at the top end of the calculator. Be
careful not to bend or severely jar the pins.

A: Support, Batteries, and Service 671

5. Press [PRG].

U_LB will appear at the top left corner of the display.

OK will appear to the right of U_LB if the calculator passes this test.

If OK does not appear, the calculator requires service.

wu) If you inadvertently short pins 1 and 2 or pins 3 and 4 of the
serial connector, the loop-back test will return
U_LB 68641 or U_LB @@0G2 (test-failed message), but
you will not damage the calculator.

Note

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold (ON).

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release [ON}.

The empty stack display should appear.

672 A: Support, Batteries, and Service

Limited One-Year Warranty

What Is Covered. The calculator (except for the batteries, or damage
caused by the batteries) and calculator accessories are warranted by

Hewlett-Packard against defects in materials and workmanship for one year

from the date of original purchase. If you sell your unit or give it as a gift,

the warranty is automatically transferred to the new owner and remains in

effect for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that proves to
be defective, provided you return the product, shipping prepaid, to a

Hewlett-Packard service center. (Replacement may be made with a
newer model of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state, province to province, or country to
country.

What Is Not Covered. Batteries, and damage caused by the batteries,

are not covered by the Hewlett-Packard warranty. Check with the battery

manufacturer about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by accident

or misuse or as the result of service or modification by other than an

authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED
WARRANTY OF MERCHANTASBILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN
WARRANTY. Some states, provinces, or countries do not allow
limitations on how long an implied warranty lasts, so the above limitation

may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD

COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES.
Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time of
manufacture. Hewlett-Packard shall have no obligation to modify or
update products, once sold.

A: Support, Batteries, and Service 673

Consumer Transactions in the United Kingdom. This warranty

shall not apply to consumer transactions and shall not affect the statutory

rights of a consumer. In relation to such transactions, the rights and

obligations of Seller and Buyer shall be determined by statute.

lf the Calculator Requires Service

wl If the contents of your calculator’s memory are important,

you should back up the memory on a plug-in RAM card,

Note another HP 48, or a computer before sending in the

calculator for repair.

Hewlett-Packard maintains service centers in many countries. These

centers will repair a calculator, or replace it with the same model or one

of equal or better functionality, whether it is under warranty or not.

There is a service charge for service after the warranty period.

Calculators normally are serviced and reshipped within 5 working days.

= In the United States: Send the calculator to the Corvallis Service

Center listed on the inside of the back cover.

= In Europe: Contact your Hewlett-Packard sales office or dealer, or

Hewlett-Packard’s European headquarters (address below) for the

location of the nearest service center. Do not ship the calculator for

service without first contacting a Hewlett-Packard office.

Hewlett-Packard S.A.
150, Route du Nant-d’Avril
P.O. Box CH 1217 Meyrin 2

Geneva, Switzerland
Telephone: 022 780.81.11

= In other countries: Contact your Hewlett-Packard sales office or

dealer or write to the Corvallis Service Center (listed on the inside of

the back cover) for the location of other service centers. If local

service is unavailable, you can ship the calculator to the Corvallis

Service Center for repair.

674 A: Support, Batteries, and Service

All shipping, reimportation arrangements, and customs costs are your

responsibility.

Service Charge. Contact the Corvallis Service Center (inside back

cover) for the standard out-of-warranty repair charges. This charge is

subject to the customer’s local sales or value-added tax wherever

applicable.

Calculator products damaged by accident or misuse are not covered by

the fixed charges. These charges are individually determined based on

time and material.

Shipping Instructions. If your calculator requires service, ship it to

the nearest authorized service center or collection point.

w Include your return address and a description of the problem.

= Include proof of purchase date if the warranty has not expired,

= Include a purchase order, check, or credit card number plus

expiration date (VISA or MasterCard) to cover the standard repair

charge.

= Ship your calculator postage prepaid in adequate protective packaging

to prevent damage. Shipping damage is not covered by the warranty,

so we recommend that you insure the shipment.

Warranty on Service. Service is warranted against defects in materials

and workmanship for 90 days from the date of service.

Service Agreements. In the U'S., a support agreement is available for

repair and service. For additional information, contact the Corvallis
Service Center (see the inside of the back cover).

A: Support, Batteries, and Service 675

Regulatory Information

U.S.A. The HP 48 generates and uses radio frequency energy and may
interfere with radio and television reception. The calculator complies
with the limits for a Class B computing device as specified in Subpart J of
Part 15 of FCC Rules, which provide reasonable protection against such
interference in a residential installation. In the unlikely event that there is
interference to radio or television reception (which can be determined by
turning the HP 48 off and on or by removing the batteries), try the
following:

= Reorienting the receiving antenna.

w Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced
radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve
Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. This is to certify that this equipment is in accordance
with the Radio Interference Requirements of Directive FTZ 1046/84. The
German Bundespost was notified that this equipment was put into
circulation, the right to check the serie for compliance with the
requirements was granted.

676 # <A: Support, Batteries, and Service

SM Tee aE

Messages

This appendix lists selected HP 48 messages.

In the following tables, messages are first arranged alphabetically by name

and then numerically by message number.

Messages Listed Alphabetically

Acknowledged Alarm acknowledged.

Calculator is autoscaling x-
and /or y- axis.

Autoscaling

Awaiting Server Indicates Server mode active.

Crd.

One or more stack arguments
were incorrect type for
operation.

Bad Araument Type

Argument value out of
operation's range.

Bad Araument Yalue

Guess(es) supplied to HP
Solve application or ROOT lie
outside domain of equation.

Bad Guesstes3

B: Messages 677

Messages Listed Alphabetically (continued)

Bad Packet Block

check

Can't Edit Null

Char.

Circular Reference

Connectins

Const ant ?

Copied to stack

Current equations

Deleting Column

Deleting Row

Directory Not

Rllowed

Directory

Recursion

Empty catalog

678 B: Messages

Computed packet checksum
doesn’t match checksum in
packet.

Attempted to edit a string
containing character “0”.

Attempted to store a variable
name into itself.

Indicates verifying IR or serial
connection.

HP Solve application or
ROOT returned same value at
every sample point of current
equation.

“*STR copied selected
equation to stack.

Identifies current equation.

MatrixWriter application is
deleting a column.

MatrixWriter application is
deleting a row.

Name of existing directory
variable used as argument.

Attempted to store a directory
into itself.

No data in current catalog
(Equation, Statistics, Alarm)

Messages Listed Alphabetically (continued)

Alarm entry prompt. Enter alarms

press SET

Store new equation in EQ. Enter eqns press

NEW

Enter value ¢zoom_ | Zoom operations prompt.
out if 1d, press

ENTER

Result returned by HP Solve
application or ROOT is an
extremum rather than a root.

Ext renunm

HALT Not Allowed A program containing HALT
executed while MatrixWriter
application, DRAW, or HP
Solve application active.

I70 setup menu Identifies |/O setup menu.

Implicit > off Implicit parentheses off.

Implicit parentheses on.

(>), (VJ, or pressed
before all function arguments

supplied.

Implicit ©) on

Incomplete

Subexpression

Attempted unit conversion
with incompatible units.

Inconsistent Units

Math exception: Calculation
such as 1/0 infinite result.

Infinite Result

MatrixWriter application is
inserting a column.

Inserting Column

B: Messages 679

Messages Listed Alphabetically (continued)

Inserting Row MatrixWriter application is
inserting a row.

Insufficient Not enough free memory to
Memory execute operation.

Insufficient = A Statistics command was
Data executed when =DAT did not

contain enough data points
for calculation.

Interrupted The HP Solve application or
ROOT was interrupted by

Invalid Array returned object of
Element wrong type for current matrix.

Invalid Card Data | HP 48 does not recognize
data on plug-in card.

Invalid D. Date argument not real
number in correct format, or
was out of range.

Invalid Definition | Incorrect structure of
equation argument for
DEFINE.

Invalid Dimension | Array argument had wrong
dimensions.

Messages Listed Alphabetically (continued)

Invalid EQ Attempted operation from
GRAPHICS FCN menu when
EQ did not contain algebraic,
or, attempted DRAW with
CONIC plot type when EQ did
not contain algebraic.

IOPAR not a list, or one or
more objects in list missing or
invalid.

IOPAR Invalid

Hamme Received illegal filename, or
server asked to send illegal
filename.

Invalid

PPAR PPAR not a list, or one or
more objects in list missing or
invalid.

PRTPAR not a list, or one or

more objects in list missing or
invalid.

Invalid

PRTPAR Invalid

PTYPE Plot type invalid for current
equation.

Invalid

Invalid Repeat Alarm repeat interval out of
range.

invalid command received

while in Server mode.

HP 48 unable execute
or STR— due to invalid object
syntax.

Invalid Server

Cmd.

Invalid Suntax

B: Messages 681

Messages Listed Alphabetically (continued)

Invalid Time

Invalid Unit

Invalid User

Function

Invalid = Dats

Invalid = Data

LH¢Neg>

Invalid = Data

LHC a3

Invalid 2PAR

LAST CHD Disabled

LAST STACK
Dissbled

LASTARG Disabled

Time argument not real
number in correct format, or

out of range.

Unit operation attempted with
invalid or undefined user unit.

Type or structure of object
executed as user-defined
function was incorrect.

Statistics command executed
with invalid object stored in
SDAT.

Non-linear curve fit attempted
when =DAT matrix contained
a negative element.

Non-linear curve fit attempted
when DAT matrix contained

a O element.

SPAR not list, or one or more

objects in list missing or
invalid.

LAST CMD] pressed while
that recovery feature
disabled.

pressed while
that recovery feature
disabled.

LASTARG executed while that
recovery feature disabled.

Messages Listed Alphabetically (continued)

System batteries too low to
safely print or perform 1/O.

Low Battery

Memory Clear HP 48 memory was cleared.

Execution of | (where)
attempted to assign value to
variable of integration or
summation index.

Hame Conflict

Name equation and store it in
EQ.

Name statistics data and

store it in SDAT.

Math exception: Calculation
returned negative, non-zero
result greater than —MINR.

SOLVER, DRAW, or RCEQ
executed with nonexistent

EQ.

Piot and HP Solve application
status message.

Name the equations

press ENTER

Hame the stat

data, press EHTER

Negative Underf low

Ho Current

Equation

Ho current

equation

Insufficient free memory in
specified RAM port.

Not enough free memory to
save copy of the stack. LAST
STACK is automatically
disabled.

No Room in Port

Ho Room to Saye

Stack

B: Messages 683

684

Messages Listed Alphabetically (continued)

No Room to Shaw

Stack

Ho stat data to

Plot

Non-Empty

Directory

Hon-Real Result

Nonexistent Alarm

Honexistent EDAT

Object Discarded

Object In Use

Object Not in Fort

COFF SCREEHM>

Stack objects displayed by
type only due to low memory
condition.

No data stored in SDAT.

Attempted to purge non-
empty directory.

Execution of HP Solve
application, ROOT, DRAW, or
f returned result other than
real number or unit.

Alarm list did not contain
alarm specified by alarm
command.

Statistics command executed

when XDAT did not exist.

Sender sent an EOF (Z)
packet with a “D” in the data
field.

Attempted PURGE or STO
into a backup object when its
stored object was in use.

Attempted to access a
nonexistent backup object or
library.

Function value, root,

extremum, or intersection was

not visible in current display.

Messages Listed Alphabetically (continued)

Out of Memory

Overflow

Packet #

Parity Error

Port Closed

Port Hot Available

Positive Underf low

Power Lost

One or more objects must be
purged to continue calculator
operation.

Math exception: Calculation
returned result greater in
absolute value than MAXR.

Indicates packet number
during send or receive.

Received bytes’ parity bit
doesn’t match current parity
setting.

Possible |/R or serial
hardware failure. Run self-test.

Used a port command on an
empty port, or one containing
ROM instead of RAM.

Attempted to execute a server
command that itself uses the
|/O port.

Math exception: Calculation
returned positive, non-zero
result less than MINR.

Calculator turned on following
a power loss. Memory may
have been corrupted.

Messages Listed Alphabetically (continued)

Indicates processing of host
command packet.

Processing Command

Protocol Error Received a packet whose
length was shorter than a null
packet.

Maximum packet length
parameter from other
machine is illegal.

Kermit: More than 255 bytes
of retries sent before HP 48
received another packet.

Receive Buffer

Overrun

SRECV: Incoming data
overflowed the buffer.

UART overrun or framing
error.

Receive Error

Identifies object name while
receiving.

Receiving

Indicates number of retries

while retrying packet
exchange.

Retry #

Select a model Select statistics curve fitting
model.

Select plat tupe Select plot type.

Select repeat Select alarm repeat interval.
interval

Messages Listed Alphabetically (continued)

Sending Identifies object name while
sending.

HP Solve application or
ROOT unable to find point at
which current equation
evaluates to zero, but did find
two neighboring points at
which equation changed sign.

Sion Reversal

Timeout Printing to serial port:
Received XOFF and timed out
waiting for XON.

Kermit: Timed out waiting for
packet to arrive.

Command required more
arguments than were
available on stack.

Too Few Arguments

10 successive attempts to
receive a good packet were
unsuccessful.

ISOL failed because specified
name absent or contained in
argument of function with no
inverse.

Transfer Failed

Unable to Isolate

Executed or recalled local

name for which

corresponding local variable
did not exist.

Undefined Local

Name

B: Messages 687

688

Messages Listed Alphabetically (continued)

Undefined Name

Undefined Result

Undefined *LIB

Hare

Wrong Araument

Count

“~ and y-axis zoom.

x 8xX1sS Zoom.

X% axils zooar

we AUTO,

Wo ax1ls Zoom,

ZERO

Executed or recalled global
name for which
corresponding variable does
not exist.

Calculation such as 0/0
generated mathematically
undefined result.

Executed an XLIB name when
specified library absent.

User-defined function
evaluated with an incorrect
number of parenthetical
arguments.

Identifies zoom option.

Identifies zoom option.

Identifies zoom option.

Identifies zoom option.

Result returned by the HP
Solve application or ROOT is
a root (a point at which
current equation evaluates to
zero).

identifies no execution action

Messages Listed Numerically

General Messages

Insufficient Memory

Directory Recursion

Undefined Local Name

Undefined ALIB Name

Memory Clear

Power Last

Invalid Card Data

Object In use

Port Hot available

No Room in Port

Object Hot in Port

Ho Roam to Save Stack

Can't Edit Null Char.

Invalid User Function

Ho Current Equation

Invalid Syntax

LAST STACK Disabled

LAST CHD Disabled

HALT Hot Allowed

Wrong Argument Count

Circular Reference

Directory Not Allowed

Non-Empty Directory

Invalid Definition

Invalid PFAR

Hon-Resal Result

Messages Listed Numerically (continued)

General Messages (continued)

Unable to Isolate

Ho Room to Show Stack

Out-of-Memory Prompts

135 Out of Memory

13C Name Conflict

Stack Errors

Too Few Arguments

Bad Argument Type

Bad Argument Value

Undefined Name

LASTARG Disabled

EquationWriter Application Messages

Incomplete Subexpression

Implicit > off

Implicit 2 on

Floating-Point Errors

Positive Underflow

Hegative Underf low

Overflow

Undefined Result

Infinite Result

Array Messages

Invalid Dimension

Invalid Array Element

Deleting Row

Deleting Column

Inserting Raw

Messages Listed Numerically (continued)

Array Messages (continued)

| 506 Inserting Column

Statistics Messages

601 Invalid = Data

602 Nonexistent EDAT

603 Insufficient = Data

604 Invalid EPAR

605 Invalid = Data LH¢Heg?

606 Invalid = Data LNCa&>

Plot, [/O, Time and HP Solve Application Messages

607 Invalid EG

608 Current equation:

609 No current equation.

60A Enter eqn, press NEW

60B Name the equation, press ENTER

60C Select plot type

60D Empty catalog

60F Ho Statistics data to plot

Autoscaling

Select a model

Acknowledged

Enter alarm, press SET

Select repeat interval

I“0 setup menu

Plot type:

COFF SCREEN)

Invalid PTYPE

Name the stat datas, Press ENTER

B: Messages 691

Messages Listed Numerically (continued)

(hex) Message

Application Messages (continued)

Enter value Czoom out if >19;, press

EHTER

Copied to stack

x axis zoom wAUTO.

X ax1s Zoom.

WY axX1S Zoom.

x and y-axis zoom,

Bad Guess(es)

Const ant?

Interrupted

Zero

Sign Reversal

Extreriur

Unit Management

Bol Invalid Unit

BO2 Inconsistent Units

Messages Listed Numerically (continued)

Bad Packet Block check

Timeout

Receive Error

Receive Buffer Overrun

Parity Error

Transfer Failed

Protocol Error

Invalid Server Cmd

Port Closed

Connecting

Retru #

Awaiting Server Cmd.

Sending

Receiving

Object Discarded

Packet #

Processing Command

Invalid IOPAR

Invalid FRTPAR

I“O: Batt Too Low

Empty Stack

Invalid Hame

Time Messages

Invalid Date

Invalid Time

Invalid Repeat

Honmexistent Alarm

B: Messages 693

C

HP 48 Character Codes

Most of the characters in the HP 48 character set can be directly typed
into the display from the Alpha keyboard. For example, to display #4,
type [a] (44)(4). (The Alpha keyboard is presented in chapter 2.) Any
character in the set can be displayed by typing its corresponding character
code and then executing the CHR command. The syntax is char# CHR.
Certain characters in the set are not on the Alpha keyboard. To display
one of these characters, you must type its character code and execute
CHR.

The character tables on the following pages show the HP 48 characters
and their corresponding character codes. (This set, except for character
numbers 128 through 159, is based on the ISO 8859 Latin 1 character set.)

co) If you find that a character you frequently use is not
available on the primary or alpha keyboards (see chapter 2

Note for all the available characters), you can assign that
character to the user keyboard for easy access. See

“Making User Key Assignments” on page 217 for more information.

694 C: HP 48 Character Codes

Character Codes (0 — 127)

TyW +t AH O wh

oe

eso ON NOR Ow Ne ON

ru YON KKH ELC CAMADVOAZASCT ACH IAAMIF ADSL

os SS Il “*, “an

C: HP 48 Character Codes 695

Character Codes (128 — 255)

Ft rm Ts C0

(Tr (ts

fo fa ee ws

a)

<q] = ts

Oy tn Pad Ft

To ti fx ee Ma wa

=] oi * 1

“ATs
i

Ts

~] iT eh ie) ae

mo ~~] mm 0

Oo fa Po fo fe wit faa iT

iT
cre CIC

uw rH Io

mo co Co tb tu
Oo ITs

rs on | mi Mi al wo so stl wt 3 sa oo no fa oe mo
rom) Oh ef
feet fee pet pet mt ta U3 a

#IF IW ow Aa OF em ml i nt

fe Uo [ie Co i ws

meee Te Te Tt. Te SR be di: Ge te oe a en i i
20 Toe

in
ad

is) lst ne .

J 4
honk fo €o fo fo oo be oo wm oe ee ee ff]: TE FT. Th

+e t 4
m1 J on a)

Ty, Mi Me iT mt et te TI

ml 4 rn 71:

a fa te
fa

he he

a i ie |

an

cr = ti 4 er ce

wri i h At %

i fs fs
ee

me ff (re

1h Pho be fe fe fo fh Po Po bo fo Po to fo fo ho es te Pe fi

ie 02 oo =]

mm

Le to hs ee

fu
: CF

Pe fm
: ce

tu 0

a |

iq

mi J ae ts

mI

Roo

i Let ~]

mF ALI ws

rn ee
1 mJ

me on me, mM it

a i ~J a rit wa: fs.

fut Po Pe Po fu Fru in| [act [us 1 [xt fe To fu he fa ka Tr Px fi ut Jult A ce ee ee ceo eee oe ed

fut fal Pack [ak Re sO

f] it mi a Ju

1

i

1

i

i

1

1

1

1

i

1

i

1

1

1

1

1

7

i

1

1

1

1

i

1

1

if

1

1

1

1

1 eee sol cel ee el el ce eed AoA on oA cn on

‘ fi

To To fo fo fa ha ho Pa a

Cf]

ean) fa fa asi _— ft cn a)

696 C: HP 48 Character Codes

D

Menu Numbers

The following table lists the HP 48 built-in menus and the corresponding
menu numbers.

[Menu #| — MenuName
| 19 |/osetup
[20 [MODES
(21 [MODES Cistomization |
[22 [MEMORY

es [23 [MEMORY Arithmetic
[nro ae [uray
[—e_[MTHHYP___‘| 2 [PORTO
7 [MTHWwaTR_—*[|_26 [PORTS
~s_[MTHVECTR | _27_|[PORT2
s_[wTHBASE «dees
BE10 [PAG or neon SOE
i |PRGSTK «| —-80_—~| SOLVESOLVR
12 [Prcosy Sida «dT
[13 [PRGDISP__——«| a2 *PLOTPTVPE
14 [PRGGTRL «~~ PLOTPLOTR
spa Test 3 ——— pag Test | “8 [te

7 [PRINT ——*(| 86 *|TIMEADIST

D: Menu Numbers 697

38
[39
0
i
oa
[a
es
se
=

(Abe

D: Menu Numbers

UNITS MASS

UNITS ANGL

UNITS LIGHT

UNITS VISC

UNITS Command

Listing of HP 48 System Flags

This appendix lists the HP 48 system flags in functional groups. All flags
can be set, cleared, and tested. The default state of the flags is clear,
except for the Binary Integer Wordsize flags (flags -5 through - 10).

System Fiags

Flag Description

Symbolic Math Flags

Principal Solution.

Clear: QUAD and ISOL return a result representing all
possible solutions.

Set: QUAD and ISOL return only the principal solution.

Symbolic Constants.

Clear: Symbolic constants (e, i, x, MAXR, and MINR) retain
their symbolic form when evaluated, unless the Numerical
Results flag —3 is set.

Set: Symbolic constants evaluate to numbers, regardless of
the state of the Numerical Results flag —3.

Numerical Results.

Clear: Functions with symbolic arguments, including
symbolic constants, evaluate to symbolic results.

Set: Functions with symbolic arguments, including symbolic
constants, evaluate to numbers.

E: Listing of HP 48 System Flags 699

System Flags (continued)

Binary Integer Math Flags

Binary Integer Wordsize.

Combined states of flags —5 through - 10 set the wordsize
from 1 to 64 bits.

Binary Integer Base.

HEX: —11 set, —12 set.

DEC: -11 clear, — 12 clear.

Rectangular: — 15 clear, — 16 clear.

-17 | Degrees: -17 clear, — 18 clear.

Clear:—V2 and [p>)(2D] create a 2-dimensional vector from

3 OCT: -11 set, —12 clear.

BIN: —11 clear, —12 set.

-13

Se -14

Coordinate System Fiags

~ Polar/Cylindrical: -15 clear, — 16 set.

Polar/Spherical: - 15 set, — 16 set.

Trigonometric Angle Mode Flags

and | Radians: -17 set, — 18 clear.

-18 | Grads: -17 clear, - 18 set.

Complex Mode Flag

7 2 real numbers.

Set:—V2 and [p>][2D) create a complex number from 2 real
numbers.

700 ~=—s«éE: Listing of HP 48 System Flags

System Flags (continued)

Math Exception-Handling Flags

Underflow Exception.

Clear: Underflow exception returns 0.

Set: Underflow exception treated as an error.

Overflow Exception.

Clear: Overflow exception returns +9.99999999999E499.

Set: Overflow exception treated as an error.

Infinite Result Exception.

Clear: Infinite result exception treated as an error.

Set: Infinite result exception returns +9.99999999999E 499.

Negative Underflow Indicator.

Positive Underflow Indicator.

Overflow Indicator.

Infinite Result Indicator.

When an exception occurs, corresponding flag (-23
through - 26) is set, regardless of whether or not the
exception is treated as an error.

E: Listing of HP 48 System Flags 701

System Flags (continued)

Description

Plotting and Graphics Flags

Function Plotting.

Clear: For equations of form y = f(x), only f(x) is drawn.

Set: For equations of form y = f(x), separate plots of y and
f(x) are drawn.

Curve Filling.

Clear: Curve filling between plotted points enabled.

Set: Curve filling between plotted points suppressed.

Graphics Cursor.

Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on
dark background.

1/O and Printing Fiags

1/O Device.

Clear: |/O directed to serial port.

Set: |/O directed to IR port.

Printing Device.

Clear: Printer output directed to IR printer.

Set: Printer output directed to serial port if flag —33 is clear.

|/O Data Format.

Clear: Objects transmitted in ASCII form.

Set: Objects transmitted in memory image form.

RECV Overwrite.

Clear: if file name received by HP 48 matches existing
HP 48 variable name, new variable name with number
extension is created to prevent overwrite.

Set: lf file name received by HP 48 matches existing HP 48
variable name, existing variable is overwritten.

702 ~=sl EE: Listing of HP 48 System Flags

System Flags (continued)

1/O and Printing Flags (continued)

-37 | Double-Spaced Printing.

Clear: Single-spaced printing.

Set: Double-spaced printing.

Linefeed.

Clear: Linefeed added at end of each print line.

Set: No linefeed added at end of each print line.

|/O Messages.

Clear: |/O messages displayed.

Set: |/O messages suppressed.

Time Management Flags

Clock Display.

Clear: Ticking clock displayed only when TIME menu
selected.

Set: Ticking clock displayed at all times.

Clock Format.

Clear: 12-hour clock.

Set: 24-hour clock.

Date Format.

Clear. MM/DD/YY (month/day/year) format.

Set: DD.MM.YY (day.month.year) format.

Repeat Alarms Not Rescheduled.

Clear: Unacknowledged repeat appointment alarms
automatically rescheduled.

Set: Unacknowledged repeat appointment alarms not
rescheduled.

E: Listing of HP 48 System Flags 703

System Flags (continued)

Time Management Flags (continued)

Acknowledged Alarms Saved.

Clear: Acknowledged appointment alarms deleted from
alarm list.

Set: Acknowledged appointment alarms saved in alarm list.

Display Format Flags

Number of Decimal Digits.

Combined states of flags - 45 through - 48 sets number of
decimal digits in Fix, Scientific, and Engineering modes.

Number Display Format.

Standard: —49 clear, —50 clear.

Fix: —49 set, —50 clear.

Scientific: -—49 clear, —50 set.

Engineering: — 49 set, —50 set.

Fraction Mark.

Clear: Fraction mark is . (period).

Set: Fraction mark is , (comma).

Single-Line Display.

Clear: Display gives preference to object in level 1, using up
to four lines of stack display.

Set: Display of object in level 1 restricted to one line.

Precedence.

Clear: Certain parentheses in algebraic expressions
suppressed to improve legibility.

Set: All parentheses in algebraic expressions displayed.

704 ~=s EE: Listing of HP 43 System Flags

System Flags (continued)

Miscellaneous Flags

Last Arguments.

Clear: Operation arguments saved.

Set: Operation arguments not saved.

Error Beep.

Clear: Error and BEEP-command beeps enabled.

Set: Error and BEEP-command beeps suppressed.

Alarm Beep.

Clear: Alarm beep enabled.

Set: Alarm beep suppressed.

Verbose Messages.

Clear: Prompt messages and data automatically displayed.

Set: Automatic display of prompt messages and data
suppressed.

Fast Catalog Display.

Clear. Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation and equation
name.
Set: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation name only.

Alpha Lock.

Clear: Alpha lock activated by pressing [a] twice.

Set: Alpha lock activated by pressing {a] once.

User-Mode Lock.

Clear: 1-User mode activated by pressing [)(USR) once.
User mode activated by pressing [)(USR] twice.

Set: User mode activated by pressing [)(USR) once.

E: Listing of HP 48 System Flags 705

System Flags (continued)

Miscellaneous Flags (continued)

User Mode.

Clear: User mode not active.

Set: User mode active.

Vectored [ENTER].

Clear: [ENTER] evaluates command line.

Set: User-defined [ENTER] activated.

Index Wrap Indicator.

Clear: Last execution of GET! or PUTI did not increment

index to first element.

Set: Last execution of GETI or PUTI did increment index to

first element.

706 ~=a EE: Listing of HP 48 System Flags

Operation Index

This index contains reference information for all operations in the HP 48.
For each operation, this index shows:

Name, Key, or Label. The name, key, or menu label associated with

the operation. Operation names appear as keys or menu labels.

Description. What the operation does (or its value if a unit).

Type. The type of operation is given by one of the following codes.

Operation. An operation that cannot be included in
the command line, in a program, or in an algebraic.

C Command. An operation that can be included in
programs but not in algebraics

F Function. A command that can be included in
algebraics.

cave. provides an inverse and derivative.

Keys. The keys to access the operation. Keystroke sequences preceded
by “... ” can be accessed through more than one menu — to see the
keystrokes represented by the “... ”, refer to the listing in this index for
the operation that immediately follows the “...”. Operations in multi-
page menus show the applicable menu page number. Operations that are
not key-accessible are identified by “Must be typed in.”

Analytic Function. A function for which the HP 48

Operation index 707

Page. Where the operation is described in this manual.

The entries in this index are arranged as follows:

Page where

What operation does operation described

Keys to access operation \

Type code Menu page Value of a unit

Name of operation

Operations whose names contain both alpha and special characters are

listed alphabetically; operations whose names contain special characters

only are listed at the end of this index.

Name, Key
or Label

Are, area (100 m?).

U [4)(UNITS) (AREA p.

Ampere, electric curre

U (4)(UNTTS) p.2 BLES

Angstrom, length (1 x 10~*" m).

U feq)(UNITS) LENG p4 A

708 Operation Index

Name, Key Description
or Label Type, neve

' gg a mooie left. -

sae ae

asa

| 0 ate [4] RULES

cicken weal
pea

0 oi EQUATION] [4] RULES
Pe)

ABS | Absolute v woh Part
el A

F ri a CIR 2 a 3 “_

—— ge past due alarm.

ACKALL

Operation Index 709

Name, Key : Description
orLabel | Type, Keys

ACOS

Arc rate cosine. =

Sioa aE ADIST Tagua an

[4)[ALGEBRA) |
O [(4)[ALGEBRA}

[r>](ALGEBRA] | Selects Equation Catalog.

O [{c>)[ALGEBRA}
ALOG Common (base 10) antilogarithm.

A {4)(10%)

710 Operation Index

Description
Type, Keys

Selects TIME ALR

O (4)[TIME) ALRM
age or pte AND.

Selects ONTTS ANGL menu. oie

Returns a expression(s) as _
argument(s) to unevaluated eee name.

F [4)(ALGEBRA] p.2 APPLY
Draws arc in PICT from 6, to 7 with center
at (x,y) and radius r.

C (PRG) DSPL RRO”

[ARCHIVE | Makes ee copy oF HOME Eisele

Minute of arc, = Tig
(4. prea a x wats

Second ais ic er Toh
(7. pore x ptt

Operation Index 711

| Name, Key Description
or Label Type, Keys

Calculates and displays area nee
| function graph between two x-values
| specified by the mark and cursor; returns
area to stack.

.. =FCN ARERR aaa re ne nD oo

| Selects UNITS AREA menu.

O (4)UNITS) AREA

Arc oo aoe sine. ie

A (MTH] “HYP

712 Operation Index

Description
Type, Keys

~~ | Attaches specified library to current —
directory.

C [4)[MEMORY] p.2 ATTAC
Aborts program execution, aborts
command line; exits special environments;
clears messages.

O

Astronomical unit, length
(1.495979 x 101! m).

U [«)(UNITS) LENG p.

Operation Index 713

Name, Key Description
or Label Type, Keys

AUTO Scales y-axis.

.. PLOTR SUTO)
C oe RUTO.

Sets — coordinates of axes
intersection; stores labels.

... PLOTR p3 (ARES:
C [pP)(PLOT) p.3 AAES:
Recalls a axes intersection to stack.

OTR p.3(P]RRES

O Be p.3 (p>) RRES

Switches clock between AM Mand PM.

O [(4){TIME) ©
pi alee aca - 2 between A AM Mand PM.

Barn, area an x 10°% ;

U [e)(UNITS) ©

714 «Operation Index

Name, Key | Description
orlabel | Type, Keys

| Barrel, sine si 158987294928 em |

U CoiUaIrs) * |

Selects statistics model Tyelding largest
correlation coefficient (absolute value) and |
hens a

Sets ora —

Sorts Siomionta . a conta Table
column of ZDAT into N + 2 bins (up toa
gs of ee ae

Operation Index 715

Name, Key |
or Label

Description |

_—- box with ios corners defined
by p namelaatine coordinates.

"Drew bax wil <=> corners defined —
by pees woh cursor.

Becquerel, activity G 1 is).
U (4) (UNITS) p.3 "RAD BG

“International Table Btu, energy
(1055.05585262 kg-m?/s?)
U (4)(UNITS]) p.2 ENRG’ (BTU

| Bushel, mee boreal .

U [4)(UNITS) “¥OL p40 BU

Returns number of Fuacionin serial
buffer.

C [4)(/0)p.3 BUFLE

716 Operation Index

Name, Key Description Page
Type, Keys

Returns object size (in bytes) and
checksum for object.

C {«)[MEMORY) BYTES

— of Tight STERAEB ae:

U [«)(UNITS) § SERUM P.

| Degrees Cai temperature.
U [4)(UNITS)p.2 TEMP *c -

Calorie, energy ee 186 ri : a: A
U [4] (UNITS) p.2 |

Operation Index 717

| Name, Key ; Description
| orLabel |; Type, Keys

IISOLVE)
O (P)IACGEBRA)

| Selects pie tsigierse

Seta Catalog

O Ne)
Candela, luminous intensity (1 gu —_
U (4) (UNITS) p.3 LIGHT p. 2 ee

Returns next a peal
F mw ART

Ke) f=(GRAEH Cont Gee

718 §#Operation Index

| Name, Key Description | Page
or Label Type, Keys

Sets center of plot display at specified
(x, vy) coordinates.

C [@)PLOT) p.2 CENT
| Recalls plot-center coordinates to stack.

ar rR p.2 — a NT aE

Returns % change from aval 2 to level 1.

F (MTH) PARTS p.2 “ACH

Chain, length (20. 1168402337 rm).
-U (4)(UNITS) ©
Converts ee Bode to ——
string.

C

| Curie, Sahay GT 7x10
| U (a/UNiTS) pss

Operation Index 719

Description
Type, Keys

| Draws circle with center at the mark and

radius equal to the distance from cursor to |

“CKSM _| Selects one = three saaiabis checksum
error-detect ar duals

In EquationWriter entry mode, clears
screen.
O [4)[EQUATION) [(->){CLR)
Clears pani

720 Operation index

Name, Key | Description

orLabel _ Type, Keys

Adds specified number of clock ticks to
system time.

CLLCD _| Blanks stack disp

CLOSEIO | -

~ CLE. __ | Purges statistical data in DDAT.
ge 7a C [4)STAT “CeE=
| CLUSR Purges all user variables.

ea ic
Purges all user variables.

~ | Centimeter, length

|U UNITS) ENG: =n
Enables /disables last command line
recovery.

- Square centimeter, area (1 x 1
0-4

U fs)

Operation Index 721

722

| Name, Key
or Label

Operation Index

Cubic cg oe (1 x 10-6 m’).

: some a row Toe Zeros at current er in
| MatrixWriter application.

Deletes current column in MatrixWriter —
application.

O (ce) (MATRIX) p.2 | :
Collects like terms ac cage

|C [)(ALGEBRA] COC
Collects like terms in al er

| page asasisa

| ssautioe depend —— ard deere
columns in ZDAT.

C Must be typed in.

Name, Key | | Description
or Label | Type, Keys

| Returns number of combinations of n items
taken m at a time.

| F

CONIC

CONJ

~ CONVERT — | Converts unit object to dimensions of
specified compatible unit.

CONT

| Displays cursor coordinates at bottom left
of display.

Operation Index 723

Name, Key Description
or Label Type, Keys

CORR Calculates correlation coefficient of
statistical data in SDAT.

C GAISTAT p4 :CORRS
ae

Causes = to do carriage return/line
feed.

C (4)(PRINT) ©
Creates a aero

Cross — of 2- or “3-element vector.

C [MTH) ¥VECTR CROSS

Returns contents of CST variable.

724 Operation Index

| Name, Key | Description Page
| Type, Keys |

| Carat, mass oe Ka)

U ()(UNITS) (MASS

| US cup, Tau a Sciacca x 10~°
U a. Sa Se eee

Separates Sornplen nUneET into tworeal
| numbers.

| — or ‘Skee apan a acoA
number or 2D vector.

O {4)[2d)

O (e){3b}

Operation Index 725

| Name, Key Description

| or Label
Type, Keys

| subexpression.

| O Fa eae RULES
(cele

| hdaraanon

0 Sl [4] RULES
(>)

‘Retums a
date.

C (eq)fME) p.2 DATE
| Returns new date from

specified date end >

number of days.

|C [4)(TIME) p.2 DATE+

Sets —— -auaal interval to n rea

0 [<) (TIME) - se AL. LRE :

726 Operation Index

Name, Key - Description
Type, Keys

Expands —— and hyperbolic
functions in terms of EXP and LN.

O [4)[EQUATION (<) RULES “SDEF
Sets Degrees mode. cata

C [4)(MODES)p.3 SEG”
‘Deletes character undercursor.
O [DEL

Operation Index 727

Description
Type, Keys

Name, Key

or Label

Erases area whose opposite corners are
defined by mark and cursor.

Deletes all characters nc cursor to start
of word.

(ojo

Deletes all anarscters free cursor to start

of line.

Deletes all Sinaia fon cursor to start

of next or

O —— an — >

Deletes all characters from cursor to end of

line.

_—- Niece wsdl |
O

728 Operation Index

Name, Key |
orLabel |

| DELALARM | Deletes oi posi syoren alarm l
ist

| DELAY | Sets —— time aaah lines sent to
| printer.

| C LANES p. 2 j i : af : he t

| DELKEYS | Clea

— peLHIed an rom current
directory.

C [S)(MEMORY) p.2 SETAC

Operation Index 729

| Name, Key

or Label

| Begins indefinite loop.
Cc “BRCH: BO
Types DO UNTIL END.

DOERR | Aborts program execution and displays _
specified message.

Dot product of two vectors.

| C VECTR “BOT.

730 Operation Index

“Name, Key | Description
or Label Type, Keys

Turns on pixels as cursor moves.

Turns ol Tired as sor roves

Plots ote axes.

ane ERE

Draws axes.

. PLOTR p.3 DRAR:

C PIFLOT ps | ‘DRA:

Operation Index 731

| Name, Key _ Description
or Label Type, Keys

Drops object In level 1; moves all remaining |
| objects ia one level.

C ie

| Drops all objects f fom ae at rare below
pointer.

Duplicates all sos on sack from pointer
throvan=s eaen level 1.

732 Operation Index

Name, Key Description Page
or Label Type, Keys

DUP2 Duplicates objects in level 1 and level 2.

D—R Degrees-to-radians conversion.

F VEC

CHO
Copies object in current level to command

Returns contents of EQ to command line
for editing.

(4)(PLOT] “EDEQ:
O [eJiSOLVE) EDEQ

Operation Index 733

Name, Key Description Page
or Label Type, Keys

DIT When command line not active, copies 66
level-1 object into command line and
selects EDIT menu.

When command line active, selects EDIT 68
menu.

O [4)(EDIT)
Selects EDIT menu. 350

O (ce) (MATRIX) (4) (EDIT)
Returns equation to command line and 242
selects EDIT menu.

O [4)[EQUATION) (4)[EDIT)
Edits current me level.

Copies selected equation into command
line and ican EDIT rr menu.

Copies subexpression into command line
and selects EDIT menu.

O [4)[EQUATION) [<) EDIT
Copies selected matrix to MatrixWriter
a cca

Edits Sean matrix ‘cok

O [ee)(MATRIX) EDIT
Displays selected alarm and selects ALRM
gg menu.

734 Operation Index

Name, Key
or Label

EDITX Copies statistical data in EDAT to
MatrixWriter application.

Types E or moves cursor to existing
exponent in command line.

O (EEX)
Selects UNITS ELEC (electrical) menu.

O {4)(UNITS) p.2 ELEC:
Erg, energy (.0000001 kg:m*/s*)

Ends program structures.

C iBRCH p.2 END”
Sets display mode to Engineering.

C [)(MODES) ENG®

Selects UNITS ENRG (energy) menu.

O [e)(UNITS) p.2 “ENRG:
Enters contents of command line. If no
command line is present, executes DUP.

O

Operation Index 735

| Name, Key ‘Description ©
or Label Type, Keys

Switches Algebraic- and Program-entry |
| modes. :

| }O [ee)ENTRY)
EQUATION Selects EquationWriter application.

0 [a EQUATION

eISOLYE) - :

(0 (PIWUGEBRA] =Eae=
pee errs = last aoty from the list in EQ.

C PLOT PLOT] ERASE

736 Operation index

| Electron TE energy
(1.60219 x 107”? kg:m2/s?)
U (4)(UNITS) p.2 ENRG p.2 ©

Evaluates object.
C

Operation Index 737

Name, Key Description :
or Label Type, Keys

| Exits Selection nonce
O () EQUATION @ exIT
Exits a N ncn) menu.

Constant e See io power of object in
level 1.

A [elle4)

“agai eee ar or aken Soe
object is te i mt oe

Moves S Saas cursor to nearest extremum,

displays coordinates, and returns them to

| Replace SRG ERIE with power-of-
ae

738 $$ Operation Index

; | Replace power-of-power with power-
gee

| Degrees oe ennaetne
U [e|)(UNTS}p.2 TEMP = Fo

| Switches displaying equation names only —
and names bond contents o pai

Fathom, ain ie

U {)(UNITS) | E
| Board foot, volume (0 00235073721 6 m7”).

U (e)UNITS} “Vor
Footcandle, jluniranca

| (856564774909 cd/m’)

U (4)UNTS)p.3 LIGHT OFC

| Selects GRAPHICS FCN [Wino menu.
. DRAWN FCN”

Operation Index 739

| Name, Key Description
or Label

‘Tests if esl flag is clear.

] na luminance
(3.42625909964 eae)
U [)UNTS) ps t

740 8=©Operation Index

| Name, Key |

or Label

Types ant STEP.

O (PRG) BRC
Selects UNITS FORCE n menu.

O [)(UNITS] p.2 FORGE

ig fractional part oe a number.

_— obec} in RAM with FSW Sop) of
object.

|C [4)[MEMORY] p.3 FREE

| FREEZE | Freezes one or more of three display areas.
C "DSPL p.4 FREES

Operation Index 741

Name, Key | |

: yma a gh (oom my

a i area 2 (00200004 r).
U (4)(UNITS) ‘ARER FT"

. — a ng (SOOT an
/U (4)UNITS) © i

| asomnd ao
ie ae ase kg wis

742 Operation Index

Name, Key Description
or Label Type, Keys

FUNCTION | Selects foshspupetl plot type.

Dispiave w Fale a function at x-value
specified by cursor. Returns function value
to sls

Plots first TdGrvalve of anaioa replots
function, bate adds jel to EQ.

Sian mass a(0 001 i

U [e)(UNITS) ‘MASS ~~ G

Standard freefall, SEaAGFatGn

(9.80665 m/s”).
U [)(UNITS) SPEED p2 GA.
US gallon, volume chee wee m?).

U [)(UNITS) ©
Canadian gallon, volume 2 (OOESHODIR).

U [)(UNITS) |
UK gallon, olunie SCOOREABOOD m a

U [4)UNTS) YOL p.2 GALU

Operation Index 743

Name, Key Description
or Label Type, Keys

GETI Gets element from array or list and
increments index.

C EE

Superposes graphics object onto
graphics object.

C DSPL p.3 GOR
Sets top-to-bottom entry mode.

O [e>)(MATRIX] GO+
Sets left-to-right entry mode.

O {e)[MATRIX) GO>
Selects Grads mode.

C [*)(MODES) p.3 GRAD.
Grade, plane angle (.0025).

U [)(UNITS) p.3 ANGE
Grain, mass (.00006479891 kg).

U {4)(UNITS) MASS p.2 GRAIN

Invokes scrolling mode.

[+] [EQUATION] (*4)[GRAPH]

O [*)(GRAPH] [)[GRAPH]

744 Operation index

Description
_ Type, Keys

Superposes inverting ahi object onto
via jena

| Hour, i RO 7

ing aa sy
 io 7 TR a

roca area aa nee

Operation Index 745

Name, Key
or Label

Adds in HMS format.

C [e)[TIME) p.3 HMS+"

Converts from HMS to decimal format.

C [(4){TIME) p.3 HMS>

Converts base 10 number to HMS
format.

Horsepower, power
(745.699871582 kg-m?/s?).

Decrements time by one hour.

O [4)(IME) ADUST “HR=

746 Operation Index

Name, Key

or Label

Hertz, frequency (1 /s).

Operation Index 747

Name, Key Description Page |
| or Label Type, Keys

STHENELSE function.

Returns imaginary a ae number
| or ind

F PARTS IM

— ro area = (00065

Cubic ch volume 3 (O000TESBTOG m?).

748 #Operation index

Name, Key | Description -
orLabel | Type, Keys

INCR

Specifies independent variable in a plot.
... PLOTR INDEP

Recalls independent variable to stack.

Inches of mercury, pressure
(3386.38815789 kg/m-s’).

Inches of water, pressure (248.84 kg/m:s’).
U (4)(UNITS) p.2 PRESS p.2 INH20

| Suspends program execution, displays _
message, and waits for data.
C TRL +

Switches between insert/replace character.
O (4){EDIT)

Operation Index 749

Name, Key Description
orLabel | Type, Keys

Moves graphics cursor to aaa
intersection in two-function plot, displays
intersection coordinates, and returns
coordinates to sepia

| TSEGT

Isolates TaraEG on iad side of equation.

|C ([4)(ALGEBRA] iS0L
Selects 1/0 Fae menu.

O (ali)
| Selects Kermit server.

[o_ cea

Kelvins, = <i a

U tre Dp. 25 Be - 4 MP

750 Operation Index

| Name, Key | Description
orLabel | Type, Keys

Kosar, ee pe kg: m/e)

Returns text tof most SS eT
KERMIT error packet.

C (lO) p2 KERR!

Operation Index 751

Name, Key Description
or Label Type, noys

| Kilopound-force “~ 221 61 526 6 kg om).
U (4)(UNITS) p.2 F

Kilometer, length (1 ar

U [s)(UNITS) (LER
| Square ammads area a (1

— “ileetD per hour. speed —
ons Anal

| ——- per Four —_—
(ey m/s).

Labels a = =e "arabia names and
ranges.

752 Operation index

Name, Key : Description
or pape

| Lambert, Rinne
(3183. ner nee cd /t*).

. Returns =e arainerk(e) to nok

C Must be keyed in.

| LASTARG | Returns previous argument(s) to stack.

|C [p>] [LAST ARG)
[LAST CMD) | Displays previous contents of command

line.

O [¢)](LAST CMD}

LAST MENU] | Selects last displayed page of previous
menu.

O [p)(LAST MENU

LAST STACK] | Restores previous stack.

O [4)(LAST STACK

Operation Index 753

| Name, Key | Description
) Type, Keys

| Avoirdupois pound, mass (45359297 kg).

-U (4) UNITS) {MASS f SLES

| Troy pe mass (3 a7a0a 7 7k).

Returns ee pate to Sek
representing si it

Selects LIBRARY ane

O [4)(LIBRARY)

754 #£Operation index

| Name, Key | Description | ; |
or ane Type, Keys

Lists all libraries attached to current
directory.

C [4)(MEMORY] p.2 “LIBS.
| Selects UNITS LIGHT menu.
O [4)(UNITS) p.3 LESRY

Draws line between coordinates in levels 1.
and 2.

C (PRG) SSP" CINE:
Draws line from mark 7 cursor.

. DRAW p.2 LINE
ae ‘p.2 | “ENE!

Returns — ins = Gia in SDAT

according to selected statistical model.

LINFIT —_ | Sets curve-fitting model to linear.
ade C (4)(STAT) p.4 MODE LIN

| LIST Returns list elements to stack. -_

Sa lecenaens —

Operation Index 755

Name, Key Description Page
or Label Type, Keys

Combines objects from level 1 to current
level into

Lumen, luminous flux
(7.95774715459 x 10-2 cd).

U (4)(UNITS)p.3 LIGHT LM
LN Natural (base e) logarithm.

A [e)O0N)
Natural logarithm of (argument + 1). 138

A HYP p.2 LNPI

LOG Common (base 10) logarithm. 137

LR Calculates linear regression. 376

ae C [(4)(STAT) p49 tR
Lux, illuminance
(7.95774715459 x 10-2 cd/m”).

pee

coy

Light year, length
(9.46052840488 x 10° m).

U [q)(UNITS) LENG p.2 LYR-

Replace log-of-power with product-of-
log.

Replace product-of-log with log-of-
power.

wink
A. =) ee)

756 Operation Index

Name, Key | Description |
or Label Type, Keys

Meter, na 7 iy

| ae meter, area Gi
U (4) (UNITS) ©

egies sia part) of number.
F (MTH) PARTS p.

Operation Index 757

Name, Key |

a 'p. 3° MARK:

0 [)(GRAPH) p.3 MARK

Selects areas menu.
O [s)(UNITS) “MASS”
Match-and-replace, beginning with
subexpressions.

C (4)(ALGEBRA) p.2 MAT.

Match-and-replace, beginning with top-
level expression.

C [¢)(ALGEBRA] p.2 “sNAT
Selects MTH MATR (math matrices) menu.

O MATR

758 ##Operation Index

Name, Key
or Label

Maximum machine-representable real
number (9.99999999999E 499).
F

Maximum column values in statistics matrix

in SDAT.

Bytes of available memory.

C [+)[MEMORY] MEM

(«)[MEMORY] | Selects MEMORY menu.

O [s)[MEMORY)
[(r>][MEMORY] | Selects MEMORY Arithmetic menu.

O [e>) [MEMORY]
Displays built-in or custom menu.

C (CTRL p.2 “MENU

Operation Index 759

Name, Key
or Label

Merges plug-in RAM card memory with
main memory.

C [4)[MEMORY] p.3 [MERG.
Micron, ha “ x 10~°

Mega — val energy
(1 ee x a be ao

iomaonar mile, enh wate 344 a

U (alUNTS) | 2
International square Tile: area
parc pot: hale

Mil, —— SINE =e

U [4)(UNITS) “LENG p.4 |

Minute, time (60 s).

Minimum of two real numbers.

760 8 8=Operation index

[Name, Key
or Label

a a real
number = pcm ape tia
a ue i bees

| Finds ceo Sua ae in statistic
| matrix in ea

INE:
US statute =n length ey a m).

-U (4)(UNITS) £
US statute square ala: area
(258998.47032 or
U _(aluatts) ©

| ——— a; mercury (torr), pressure
(133.322368421 kg/m-s?).
U ae p.2 PRESS

Operation Index 761

Name, Key ‘Description
| oF Label Type, Keys

Milliliter (cubic centimeter), volume
| (1x 107° fat

aon
F (MTH) PAR =) p. 2:

Selects MODES menu.

O [+)[MODES}
| Selects MODES Customization menu.

|O [re)(Mobes)
Selects STAT MODL (statistics model)
menu.

U [4)(UNITS) + MASS” p.3 =

Megaparsec “length TF
(3. psi gt m).

762 Operation index

| Name, Key Description
: Type, Keys

| a MTH (math) menu.

| O
Sched date on nee |
O {()[TIME) ©

| Meters per =e — . may.
|U [4)(UNITS) SPEED “M45 —
| Newton, force (1 kg:m/s*).
U_GlUNITS) p.2 FORCE |

Takes — or matrix from stack,
prompts for name, stores named algebraic
in EQ, or a Mairi in SDAT.

| rsyISOL¥E) EW
}O [(4)(STAT) ©

~ | Decouples ay aa Tis or variable
name.
C (o)MEMORY] p.2 N

Operation Index 763

Name, Key Description |
orLabel | Type, Keys

Displays but does not execute next one or
two — in eae nc oe

a alarm oT hil a Tae
to TIME veers menu.

F OT BASE” [pA a NOT.

Selects next page of menu.

O (NXT)

764 Operation Index

Name, Key
or Label

-Remaps HP 4 48 5 charactors setto match HP |
82240A inn pga!

Turns eae on.

0

Operation Index 765

Opens serial port.

|C (al(Z0) p.2 OPENT

a Rearanges\ VAR menu ino order specified in | _

C [4)[MEMORY) ORDER
| Puts selected equation at top of Equation | 260
| Catalog list.

(4)PLOT) tAT = p2 BREER
SIE |

| Puts einai statistical ey at ~ of
| Statistics eo Lae

766 Operation index

| Name, Key | ; Description
or Label

| US fluid ounce, volume
(2. 95735295625 x x 10°° lp
U [e)(UNITS) | YOR” p. =
Troy ae , Mass IG 031° 103475 Bg) |

UK aaa ounce, cluma
(2.8413075 x ia i)
U [(+)(UNITS) “¥OU™ p.

| Poise, dynamic waaay oir 8)

U (4) UNTS)p.3 WISt) = PZ

samt list SaaaiinG path to current
directory.

Operation Index 767

Description _
Type, Keys

Purges aacliod aiesay

/C [S)(MEMORY] p.3 PGDIR
Phot, illuminance oer’ TTATIS459 cd ws n*)
U Lou UNITS I E 3 £ “ = |

768 Operation index

Name, Key Description |
or pene Type, Keys

PICK |

i Pr a a

Sends ea ioe a server.
C [4)0/0} Be 2 PRT

Operation Index 769

Name, Key Description

or Label Type, Keys

PLOT Selects PLOT menu.

O [(4)(PLOT)
Selects PLOT PLOTR menu.

O {c>)[PLOT)
Makes the selected entry the current
statistical matrix and displays the third
page of arr ahh menu.

Selects — SCO
TR a

ae PE
CTRE |

Sets ——— Tie SOordinatae.

C Must be typed in.

Sets lower-left plot coordinates.

C Must be typed in.

Switches rectangular and polar
coordinates.

O [c>)[POLAR}

770 =Operation Index

Name, Key
or Label

Returns the position of substring in string
or object in list

Selects ONS POWR eee menu.

Returns predicted value for independent
variable, Cas value ot Sev shale variable.

Returns —— value! iar Fdepaianl
variable, given value of independent
pages fev

Selects 7 PRESS 5 (precaura) menu.

O (4)(UNITS) p.2 "PRES.
Selects previous page of menu.

O («)[PREV)
(P)[PREV] | Selects first page of menu.

O [c>)(PREV}

Operation Index 771

Name, Key Description Page

or Label Type, Keys

Selects PRG (program) menu.

O
PRINT Selects PRINT menu.

O [*)[PRINT)
Prints display.

C (e)(PRINT) PRED
O Simultaneously press (ON) (MTH)

Selects MATH PROB (probability) menu.

O _PROE
Displays prompt string in status area and
halts program execution.

PRLCD

PROMPT

Prints all a on setae in compact
format.

C [oj[PRINT) PRSTC

772 Operation Index

Description —
Type, Keys

Name, Key i
or Label

Prints name and contents of one or more
variables (including port names).

Prints object in level 1.

(44)(PRINT] “PRE”
C [ce) (PRINT)
Pounds per square inch, pressure
ore nice hare a

Pint, aah ar (O87 TEATS mm”).

Selects = PTYPE? menu.

eo ell

C (4)[PURGE)
Purges one or more specified variables. If
only one untagged variable specified, |
saves previous contents for recovery by

| LASTARG.

O [«)[PURGE]

Operation Index 773

| Purges selected amt

[c>)[PLOT) © 7
0 Sa SCAT | =p. 0.2 |
Purges selected statistical matrix

O (STAT) CAT’ p2 (Pu

| — alamani in array os ist
pha licle chee

sauna ist ae current Fach acts an
libraries within a port.

C [)[MEMORY] p.2 PYARS
Displays P/CT with speckled pixel at
upper-left corner of open

Operation index

Set curve-fitting model to P

C (4)(STAT) p.4 MODE | PHE Re

Converts pixel coordinates to u: aah
eoondinales:

C (PRG) ©

— andc compares Sitios of
number and number/n.

C [)(ALGEBRA)p.2 38H
Radian, plane angle (. TSSTSASERORD)

U [(4)(UNTS)p.3 ANGE OR _

Roentgen, radiation exposure
(. “ret A: fie

Operation Index 775

Name, Key | Description
or Label Type, Keys

Degrees Rankine, embers.

U GAJUNTS) p2

. Sets es oo

C [S)MODES) p.3 SRADE

Selects ee menu.
O (4)(UNTS)p.3 RAD
Returns api number.

C “PROB RAND

Prefix an a / used by EquationWriter
application.

F Must be typed in.

776 Operation Index

|c ja PLOT GLDRAM!
Recalls object stored in specified variable —
to stack.

C [e)[Rct)
~ | inserts algebraic from level 1 into

EquationWriter equation.

O [)RCC)
RCLALARM

| Returns —e fast leat states
of gi flags.

RCLKEYS | Returns —— of current ea
assignments.

[RCLMENU _ | Returns menu es of cen menu.

Operation Index 777

| | Name, Key
or Label

Recalls current statistical matrix in DAT.

C (alSTAT) tox

| Si aa — Racers =
|U (e)UNITS) CENGp.3

Seer ae aa hae on
SS Oh hes

(MTH) FARTS {ORE

Waits for stackeiedtiod data from remote
source running Kermit soars:

Waits for soci apeanit data from
remote ea — Kermit software.

778 $Operation Index

Name, Key
or Label

| REPEAT | Begins REPEAT clause.

REPL Replaces portion of object with another like
object.

| Replaces portion of PICT
| graphics object.

Replaces specified subexpression with
algebraic from stack.

O [)[EQUATION) (<) REPL

Operation Index 779

| Name, ney Description

or Label Type, neve

Resets — vain in PPAR in the
current directory to their default states and |
erases and resizes PICT.

RESTORE

780 Operation Index

Name, Key Description Page
or Label Type, Keys

REVIEW Displays statistical data in ZDAT.

O [4)(STAT) (4) (REVIEW)
Displays current equation and plot
Speebe

E=IFLON (REVIEW)
“DRAH (4)[REVIEW)

Be 70 (4) (REVIEW)
O [)(GRAPH) [GRAPH] [+] (REVIEW]
Displays current equation.

O [4)(SOLVE) (4)(REVIEW)
(4) (PLOT) (4) [REVIEW]

Displays current equation and values of
SOLVR variables.
O IL

pine unit names pe, to
selected menu.

O (4)(UNITS)... (4)(REVIEW)
Displays pending alarm.

O {+} (TIME) (4) (REVIEW)
In other menus: Lists operation names and
types.

O [#)(REVIEW)

Operation Index 781

Name, Key | Description

| Rotates left by one bit.

/C [MTH) (BASESp.2 §
| Rotates left bi one bye

| Solves for immo varablot in equation.

C [sJ[SOLVE] ROOT”

782 Operation index

Name, Key _ Description
| or Label Type, Keys

Moves graphics cursor to intersection of
| function plot and x-axis, displays value of
| root, returns value to stack.

Inserts row as Zeros a current row.

Oo (ce) [MATRIX] p.< 2 +ROW

| Selects TEAL ALR APT 3 Teer repeat)
menu.

|O [<)(TIME) ©
~ | Rotates By one > bit

C
: —— oh ya one te
C ([MTH) BASE p.2 |

| Calculates correction to sanihicn of system
of pease

C

Activates ee transformation menu for

een ol

Operation Index 783

Tatars aos eye ‘

a jannie UGE

| (1 A*-s*/kg-1r).
|U ()(UNITS)p.2 “ELEC p.2 —

784 #=©Operation Index

| Name, Key
| or Label

SAME Tests two objects for equality.

| Stilb, luminance (10000 cd/m?)
|U ()(UNITS) p.3 LIGHT — ¢§

Operation Index 785

Name, Key Description
or Label Type, Keys

Selects Scientific display mode.

Calculates standard deviation.

C [#)[STAT]) p.2 SDEYV

Increments current time by 1 second.

O ()MIME) ADUST “SECH
Decrements current time by 1 second.

0 fl ADUST ‘SEC
Sends contents of variable to another
device.

Puts HP 48 into Kermit Server mode.

[4] eSER YS

C [r){IZ9}

SERVER

786 Operation Index

Name, Key
or Label

| Selects TIME SET menu.

|}O {[4)(TIME) | SET.

| Sets alarm.

| Reconstructs expression to resolve implicit
| variable name.

| Returns sign of number.

F PARTS SIGH”

| Hyperbolic sine.

“HYP SIH.

Operation Index 787

Name, Key Description Page
or Label Type, Keys

SINV Replaces contents of variable with its

Badll inverse.

SIZE

€SKTR

C [c>)[MEMORY] p.2 SINV’
Finds dimensions of list, array, string,
algebraic yea or Deg sei oot

788 Operation Index

| —— contents al variable.
C [e>)[MEMORY] p.2 SHEG.

| Selects tt menu.

(A)SOLVE) SOLVR
ISLE] 4
[->]{SOLVE}

Selects —— eEeee! menu.

O ([4)(UNITS) SPEED

Operation Index 789

Name, Key : Description
or eee Type, Keys

Shifts a by one
ic BASE p. 3

| = solid angle
(7. ee i x ait

ae coed sunber of characters from
1/O port.

C [4)0/0) a 3 ‘SRI OM.

Sigiasiaps rough suspended program
and its sie

T Stere, aun m :
U_(alUNts) ©

790 Operation Index

| Name, Key | — Description
or Label Type, Keys

| Begkn definite wn gol

|C (PRG) BROH Ss

Selects =o maar menu. —

}O ()(STAT)
Selects page 2 of STAT menu.

O [ce)(STAT}
| Selects Standard display mode.

Operation Index 791

Name, Key Description
| or Label Type, Keys

| Stores eva 1 wt fa in EQ.

~ | Selects = Stack

. pT. 'K

IEDM

0 lar p.2 =

792 Operation index

| Name, Key
or Label

| Description Page
| Type, Keys |

Copies ep re to love 1.

O {4)(STAT) CRT FSTK
| Copies vere alarm to Tove 1.

0 PATE 9S Te
Copies selected matic element to level 1.

|O [e>)[MATRIX] p.2 4STK™

| Stores object in variable.
Cc

Stores object in variable and
previous contents of variable for recovery
by LASTARG.

O
Returns EquationWriter equation or PICT to
stack.

}O [STO]
| STOALARM Stores eco 1 alarm in ae isin list.

iw | ~

STOKEYS

299

303

Makes multiple user key assignments.

C [c)(MODES) STOR

Operation Index 793

Name, Key Description
or Label Type, Keys

STO+ Adds specified number or array to
contents of specified variable.

STO- Subtracts specified number or array from
contents of specified variable.

STO Multiplies contents of specified variable by
specified number.

STO/ Divides contents of specified variable by
specified number.

C [c>)(MEMORY] STOR.

STOX Stores current statistics matrix in SDAT.

C Must be typed in.

STWS Sets binary integer wordsize.

C BASE STWS.
Extracts specified portion of list or string,
or graphics object.

OBS p.3 =SuB-
CG se

794 =©Operation Index

| Name, Key Description Page
or Label Type, Keys |

| Sievert, dose Sore (are

(VUNTS) p.3 ©

a —— and Numerical Results
mode.

|}O [4)(MODES) SYM
Evaluates system apiece ‘<i only as.
specified by HP applications.

C Must be typed in.

SYSEVAL

Operation Index 795

Name, Key |
| orLabel |

| Cay: Sproant fraction that level-1 is
level-2.

Combines spac in levels 1 and 2 to
create tagged object.

C (PRG) (OBJ STAG.

796 8 §=©Operation Index

| Name, Key |
orLabel |

Calculates Taylor’s polynomial.

C (4)(ALGEBRA) TAYLR

Tablespoon, volume

(1.47867647813 x 10

“| Selects UNITS TEMP (temperature) menu. _

|O [<)(UNITS) p.2 TEMP:

Returns system time as binary i
units of clock ticks.

Operation Index 797

Name, Key Description Page
or Label Type, Keys

TIME Returns current time as a number.

C (4)(TIME) p.2 EEHE.
(+) (TIME) Selects TIME menu.

O [(«){TIME)
Selects Alarm Catalog.

O(c») (TIME)
Selects nls TIE menu.

(c>) (TIME)

a — on ine defined By
= omeaas in ages 1 eis 2.

798 #Operation Index

"Name, Key | ; Description i
Type, Keys

Switches pixels on and of on line between
mark and cursor. |

“TMENU a list-defi ian menu but does not
change mona of vid

“TNE

a i — ion mass = B KO).
U [a)UNITS) "MASS p.2 “TON
Torr (mmHg), pressure
(133. rise 2 soil

TRANSIO "Solecis one = — ShaTaGGR translation _
settings.

Operation Index 799

Description
Type, Keys

Expands trigonometric and hyperbolic |
functions of sums and differences.

Transposes matrix.

Truncates (rounds dow
as specified in level 1.

Converts date and time in num
string form.

Returns variables conta
object type.

C [4)([MEMORY] p.2 T

ust 1g ane

| Unified atomic mass (1.66057 x 107
U (+)(UNITS) $$ p.3 :

800 Operation Index

Name, Key Description Page
or Label Type, Keys

UBASE Converts unit object to SI base units.

F (e)(UNITS) JERSE
Factors specified compound unit.

C {c>)(UNITS) UFRET
Combines objects in levels 1 and 2 to
create unit object.

Selects UNITS Catalog menu.

O {+4)(UNITS)
Selects UNITS Command menu.

O [ce)(UNITS)

(4) (UNITS

(>) (UNITS

Makes parent directory the current
directory.

C [ejUP)

Returns probability that chi-square random
variable is greater than x.

C
pee

Operation Index 9801

Name, Key Description
or Label Type, Keys

UTPF Returns probability that Snedecor’s F
random variable is greater than x.

UTPN

C (MTH) PROB p.2 UTPF
Returns probability that normal random
variable is greater than x.

UTPT

UVAL

C (MTH) PROB’ p2 UTPH:

Returns probability that Student’s t random
variable is greater than x.

C ([MTH) FROB p2 UTPT
Returns scalar of specified unit object.

F a UMAL

nil variance of SaTEICal dap

columns in XDAT.

C Must be Epes in.

Makes _ selected entry the current
statistical matrix and displays the second
page of the STAT menu.

O [(4\GTAT) CAT 1=VAR
Makes the selected any the current

statistical matrix and displays the fourth
page of the STAT menu.

O ([4)(STAT) CAT 2-VAR

Returns list of Tarebies | in current directory.

C [4)(MEMORY] “ARS

802 #£Operation Index

Name, Key

or Label

Switches vector and array modes.

O [cc)(MATRIX] VEC"
Selects MTH VECTR (math vector) menu.

Copies level 1 object into appropriate
environment for viewing.

O [¥)
Copies object in current level into
appropriate environment for viewing.

O ... FESIEKS SATEW

Displays selected equation.

O ... -CAT=: VIEW
Displays selected matrix.

0 {4 “CAT VIEW
Displays selected alarm.

O (|){TIME) CAT VIEW
Copies object stored in variable in the
current level into appropriate
environment for viewing.

O ... *5TK (e) VIEW.

Selects UNITS VISC (viscosity) menu.

0 [4 p.3 ¥ISC.
lf argument is name, copies contents of
associated variable into command line for
editing. If argument is a stack level
number, copies object in that level into
command line for editing.

O (e)Msit)

Description Page
Type, Keys

VISIT

Operation Index 803

Name, Key Description
or Label Type, Keys

Selects UNITS VOL (volume) menu.

O [4)(UNITS) “¥oL™

Returns type AUmbet of object stored in
local or at name.

Combines two a numbers ito a 2-D
pagel or abla number.

C ie ea LoVe

<a shrOs ‘eal numbers into 3-D
eae

= 2- or 3-element vector according
to current pdceth uae

C [MTH) ¥
Watt, power ti Fa 7s a

[4] sti p.2 POH se ie

Halts program execution for specified
number of cae or until ey pressed.

BO4 Operation Index

Name, Key | Description _
or Label Type, Keys

a =caaii width aaa janice

number of columns.

O [cp)[MATRIX] “WID+:
Decreases column width and increments _
number sali cape

| Returns sum Tal can in ndonendink
column in DAT.

C [s)STAT)/ p.5 2k

Returns sum of squares = sata
| i shell coum in 1 EDAT.

Operation Index 9805

Name, Key Description

or Label Type, Keys

Specifies independent-variable column in
matrix in SDAT.

C ISTAD ps xeon:
Recalls independent-variable column
number to stack.

Without Kermit protocol, performs serial
send of string.

C (aj) p3 xMIT:

Returns exponent of number.

F PARTS p.3 SPON-
Specifies x-axis display range.

C [pP)[PLOT) SRN

... PEOTR (>) SENG
O [P)(PLOT) (>) RRNG:

806 Operation Index

Name, Key
or Label

XROOT Returns level 1 root of the real number in

level 2.

A [ello
Selects x- and y-axis Zoom.

O ... ZOOM RY.

Selects Rectangular mode.

O [4] p.3 ATS.
Returns sum of products of data in

independent and dependent columns in

DAT.

C [e)(STAT) p.5 BxX*y
Selects y-axis Zoom.

O ... 400M) 222

Returns sum of data in dependent column

in SDAT.

Returns sum of squares of data in

dependent column in DAT.

C [al(STAT p.5 Eyv*2

Operation Index 807

Name, Key

or Label
Description

Type, Keys

Gelade WIGGT colinnniO SDATEE.

dependent-variable column for two-

C fe)[STAT ps YOOL”

Recalls A E meaner

to stack.

0 Ealet AN) p.3 (e) ve

“Year, time a 550905. a747 8).

808 Operation Index

Name, Key Description Page
| or Label Type, Keys |

— vax 2 ata range:

-Zooms i - to ae aiGas Gas corners
are defined by mark and cursor.

DRAW wn

Operation Index 809

| Name, Key Description Page
or Label Type, Keys

If cursor is on a number, changes sign of
mantissa or exponent of that number.
Otherwise, acts as NEG key.

C
| Switches cursor style between super-
imposing and peng cross.

O (al LGRABR) p. 3
Add and subtract 1.

O [4)[EQUATION [4J) RULES +

| Subtracts two objects.

| A a

810 Operation Index

Double Soe en distribute.

Name, Key Description Page
or Label Type, Keys

Multiply by 1.

O [4)(EQUATION (4) RULES

Divide by 1.

_|9 Eee iF Se pes

Raise to power -

O [*)[EQUATION) Ce RULES od

Operation Index 811

Name, Key
or Label

$12 Operation index

Switches implicit parentheses on and off.

O [4)[EQUATION) (4)[_})

Returns equation to stack as string.

O [(4)[EQUATION) (PE)

Degree, plane angle
(2.77777777778 x 107°).

Operation Index 813

Name, Key Description
or Label Type, Keys

Cc :

Returns square root of level-1 object.

A
Appends local name, or variable of
integration, and its value to evaluated
expression.

F [eJ(ALGEBRA]p.2 1.

814 Operation Index

SaihcPos baxon between io hour ang TARTS
display Saat ois

Oo [al CHIME] ET: f2724

oe

0 Slag ann [<) RULES [oesce

subexpression.

: =—
 [<] RULES

aa EER |

0 oe RULES (9)

Operation Index 815

Name, Key Description
or Label Type, Keys

Creates local variables.

C fe)
Left shift key.

==
Right shift key.

0 [ec]
In command line, deletes character to left

of cursor.

0 f¢)
Deletes cone of current stack level.

In multi-line eoniniand line: Moves cursor
up one line.

In Interactive Stack: Moves pointer up one
level.

In Graphics environment: Moves cursor up
one pixel.

In scrolling mode: Moves window up one
pixel.

In MatrixWriter application: Moves cell
cursor up one row.

in EquationWriter application: Starts
numerator.

In Selection environment: Moves cursor up
one object.
In catalogs: Moves pointer up one entry.

0 fl

816 Operation Index

Name, Key Description Page
or Label Type, Keys

In multi-line command line: Moves cursor

to top line.

In Interactive Stack: Moves pointer to
highest numbered stack level.

In Graphics environment: Moves cursor to
top edge of PICT.

In MatrixWriter application: Moves cell
cursor to top element of current column.

in Selection environment: Moves cursor to
topmost object.

ln catalogs: Moves pointer to top of list.

O {e>){4)
In catalogs: Moves pointer up one page.

In Interactive Stack: Moves pointer up 4
levels.

O (4)[4)

Operation Index 817

Name, Key Description Page
or Label Type, Keys

In multitine command line: Moves cursor

down one line.

In Interactive Stack: Moves pointer down
one level.

In Graphics environment: Moves cursor
down one pixel.

In scrolling mode: Moves window down
one pixel.

In MatrixWriter application: Moves cell
cursor down one row.

In EquationWriter application: Ends
subexpression.

In Selection environment: Moves cursor

down one object.

In catalogs: Moves pointer down one
entry.

O fy)
In multi-line command line: Moves cursor

to bottom line.

In Interactive Stack: Moves pointer to
level 1.

In Graphics environment: Moves cursor to
bottom edge of PICT.

In MatrixWriter application: Moves cell
cursor to last element of current column.

In EquationWriter application: Ends all
subexpressions.

In Selection environment: Moves cursor to

bottommost object.

In catalogs: Moves pointer to end of list.

0 (ej)

818 Operation Index

Name, Key Description Page
or Label Type, Keys

(4) [¥) In catalogs: Moves pointer down page.

In Interactive Stack: Moves pointer down 4 | 72
levels.

0 [alfy)
In command line: Moves cursor one 75
character left.

In Graphics environment: Moves cursor
one pixel left.

In scrolling mode: Moves window left one
pixel.

In MatrixWriter application: Moves cell
cursor one column left.

In EquationWriter application: Activates
Selection environment.

In Selection environment: Moves cursor
one object left.

0
[+] [) In EquationWriter application and Graphics

environments: Invokes scrolling mode.

([)[GRAPH]) |O [4)[<) ((4)[GRAPH))

Operation Index 819

Name, Key Description Page
or Label Type, Keys

(ell In command line: Moves cursor to start of 75
current line.

In Graphics environment: Moves cursor to | 303
left edge of PICT.

In MatrixWriter application: Moves cell 350
cursor to first element of current row.

399

7

In Selection environment: Moves cursor to

820 Operation Index

leftmost object.

0 Pil
In command line: Moves cursor one
character right.

In Graphics environment: Moves cursor
one pixel right.

In scrolling mode: Moves window right one
pixel.

In MatrixWriter application: Moves cell
cursor one column right.

In EquationWriter application: Ends
subexpression.

In Selection environment: Moves cursor

one object right.

O bj

303

229

Name, Key
or Label

i) >)

Description
Type, Keys

In command line: Moves cursor to end of
current line.

ln Graphics environment: Moves cursor to
right edge of PICT.

In MatrixWriter application: Moves cell
cursor to last element of current row.

ln EquationWriter application: Ends all
subexpressions.

In Selection environment: Moves cursor to
rightmost object.

0 PIP)

Operation Index &21

~~ al. tr o.oo ome d —s vs"

ety, wy sohtetwietheisiion weed jm
oe} ares <a, Lege ‘pos!

1s =, —= CF — Sa G0 ee ee ea oo oar er ae ne

By Laie ytsinnpenkete igi tos deeeap chien yen att
Aare (hin am nyt x: |

OL nhieu Genelia ieee le
LE eal a oP PVT PO dee pete _ iggsh

bp apelin trae y thet angel
oy ns Ha cd Pee Smrarrestictgu Ngo caegeaes i

Ce oe

f oh | “Yess onset armen] Te
| iuttreimns coat. «sah nectert ur]

5 bars | » ibs oy wae =A TTI AE ee) Pe ahi ee ,

— ‘ iv aentwraiss lia: Smstees Nea .
} MELees (h.8 faire 2]

_ Tie Senate eer Barer <9
whe Ani ey

| ite eae y fice: fadyeemy Moje tery

| 5 AVR

ovine anylirsilaa: (sivye- onl
Curry rie eee herd,

| .o4s @ gumuimetias wien te

12 Ae p29 See |

| Ree) Ce. Aiiteeaifac

_ ibe sgh

| ine

index

A
aborting with the attention key
command line, 54
environments, 54
programs, 54

absolute value
of a matrix, 360
of a number, 148
of complex numbers, 166
of vectors, 177

accented characters, generating,
53

accuracy
in solving systems of equations,

362
of fraction conversion, 136
of x, 140

adding
a stack value to a variable, 115
in the EquationWriter

application, 231
numbers, 134

ADJST menu, 443

Alarm Catalog, 449
operations, 450

alarms
acknowledging, 446
appointment, 445
commands, 450

control, 448

execution action, 444
lost after recovering memory,

102
past due, 447
recovery from short-interval

repeating alarms, 448
repeating, 444, 445
rescheduling, 447
reviewing and editing, 449
saving, 447
setting, 443
turning the beeper off, 447
unacknowledged, 447
used in programs, 453

alert annunciator, 48
algebra, 386 — 417

adding fractions, 409
building and moving

parentheses, 403
collecting terms, 395, 402
commutation, association, and

distribution, 404
comparing methods for isolating

a variable, 393

expanding products and powers,
396

expanding trigonometric
functions, 409

general and principal solutions,
393

Index 823

isolating a variable, 389
limitations, 390
moving terms, 402
multiple execution of Rules

transformations, 410
rearrangement of exponentials,

408
rearranging terms, 394
Rules transformations, 397
Selection environment, 398
showing hidden variables, 394
solving equations for a variable,

solving quadratic equations, 390
symbolic solutions, 388
universal transformations, 400
user-defined transformation,

414

ALGEBRA menu, 389, 395
Algebraic-entry mode, 76

annunciator, 48, 84
entering unit objects, 189, 191

Algebraic/Program-entry mode,
77

algebraics, 125-130
are mathematical expressions,

85
collecting terms, 571
compared to programs, 125
differentiation, 419
disassembling, 90
evaluation, 125
evaluation of terms, 128
mode for keying in, 76
mode for keying into programs,

vy
nested parentheses in, 128
object type number, 97
parentheses are highest

precedence in, 128
precedence of operators, 128
rearranging terms, 397

824 index

replacing in the EquationWriter
application, 248

short for algebraic objects, 85
simplification process, 128
stepwise evaluation, 126
using comparison functions in,

492

using complex numbers, 164
using complex numbers in, 161
using logical functions in, 493
using unit objects in, 191
viewing in the EquationWriter

application, 241
alpha key

activates alpha keyboard, 25
press twice for alpha lock, 53

alpha keyboard, 52
alpha keyboard annunciator, 48
alpha left-shift keyboard, 50
alpha lock, 53, 222
alpha right-shift keyboard, 50
Alpha-entry mode, 52, 53, 222
ALRM menu, 444

ALRMDAT reserved variable,
contains data for an alarm,
108

am/pm time format, 442
analytic functions, are a subset of

functions, 42
and

with binary integers, 210
with tests, 493

angle, in complex numbers, 157
angle conversion functions, 142
angle modes, 139, 170, 350

selecting, 139
angle units, 198
animation

of custom graphical image, 597
of Taylor’s polynomials, 588

annunciators
are displayed in status area, 48
complete list of, 48
share “territory” with messages,

48
answers to common questions, 656
antiderivative, 428
application cards, 651
appointment alarms

acknowledging, 446
unacknowledged, 447

approximation
of symbolic constants, 144
of the definite integral, 432

arc cosine, 140
arc hyperbolic cosine, 137
arc hyperbolic sine, 137
arc hyperbolic tangent, 137
arc sine, 140
arc tangent, 140

archiving memory, 624, 648
area, beneath a plotted curve, 308
arguments, on the stack, 61
arithmetic

with a matrix and a vector, 356
with complex arrays, 357
with complex numbers, 156
with dates, 454

with time, 456
with unit objects, 200
with variables, 115
with vectors, 353

arithmetic and general math
functions, 134-135

arrays, 83, 346-364

assembling, 90
commands for, 360
complex, 357
dimension (size), 90
entering using the command

line, 350
printing, 604

ASCII Transmission mode, 617,
629

assembling
complex numbers, 160, 166
unit objects, 206
vectors, 173, 183

assigning user keys, 217
association, algebra, 404
attention key, 25

halts current activity, 54
Automatic Alpha Lock mode, 222
automatic off, happens after 10

minutes, 25
autoscaling a plot, 295
available memory, number of

bytes of unused user
memory, 101

axes
labeling, 320
specifying coordinates of

intersection, 320

backing up directories, 645
backspace editing

in EquationWriter application,
241

in the command line, 75

backup objects, 645, 646
in custom menus, 213
object type number, 97
store objects in plug-in memory,

bar over menu label, indicates a
directory, 118

bar plot, 379
from Plot application, 336
from Statistics application, 379

base
binary integers, 207
selecting, 208

base 10 antilogarithm, 137

index 825

base 10 logarithm, 137
base e (natural) antilogarithm, 137
base e (natural) logarithm, 137
base marker, 207

entering, 208
BASE menu, 82, 208, 210

batteries, 25, 660
changing, 661
for plug-in RAM, 638, 661
for the HP 48, 661

baud rate
during printing, 610
setting, 617

beeper, turning off for alarm, 447
beeping, from a program, 522, >)
Bessel functions, 585 |
best fit line, 376
binary arithmetic, 207-211
binary base marker, 82
binary integers, 82, 207

base, 207
bits displayed, 208
calculations, 209

displaying, 208, 554
entering, 208
internal representation, 208
logic commands for, 210
object type number, 97
wordsize, 207

binary to real conversion, 210
Binary Transmission mode, 617,

629
Black Gold Ltd, 27
blue keys, 25, 50
boolean logic commands, 210
box, drawing, 337
brackets, used to enter vectors,

172
BRCH menu, 494, 501

bubble sort, 561
buffer length, serial I/O, 632
buffered keystrokes, 48
buffered printing, 608

826 index

built-in commands, 90
object type number, 97
use 2.5 bytes, 101

built-in constants, 144
built-in functions, 90

compared to user-defined
functions, 150

object type number, 97
built-in menu, displaying, 534
built-in unit objects, 193
busy annunciator, 48
bytes command, returns

checksum, 101

C
cable connection, PC to HP 48,

621

calculus, 418 — 436
complete differentiation, 421
differentiation, 419
differentiation of user-defined

functions, 422

how the HP 48 does symbolic
integration, 429

numerical integration, 432
summations, 423
symbolic integration, 428
Taylor’s polynomial

approximation, 431
capital letters, 50
carriage-return, dumping the print

buffer, 603

CASE. ..END program structure,
497

Catalogs
Alarm, 449
Equation, 253, 258
Review, 112
Statistics, 370

centering a plot, 295
chain calculations, using the stack,

62

changing sign
of a number, 47, 134

changing the contents of a
variable, 111

character codes, 694-696

character sets
printing the HP 48 character

set, 607
printing with the Infrared

Printer, 609
remapping the infrared printer,

603
translating during input/output,

626
characters

converting numbers to
characters, 90

determining their numeric
value, 90

entering special characters, 50
generating accents, 53

checksum, 547
used to verify objects, 101
with input/output, 617

chi-squared test, 384
circle, drawing, 337
clearing

alarms, 450
all variables in a directory, 115
flags, 222, 516
last error, 542
memory (press three keys), 101
messages from the display, 48
objects when out of memory,

103
the stack, 64

user key assignments, 219
using the attention key, 25

clock
adjusting, 443
commands, 441
recording execution time, 552

closing serial port, 614

collecting terms, 395
algebra, 402

column norm, of a matrix, 359
combinations, calculating, 147
comma, as fraction mark, 58
command arguments on the stack,

61
command line, 75-77

cancelling with the attention
key, 54

editing in the EquationWriter
application, 242

entering and editing text, 46, 75
entering arrays, 349
keying in numbers, 47
middle section of the display, 45
recovering previous command

lines, 77

scrolls after 21 characters, 46
command-line string, building, 528
commands

are a subset of operations, 42
as objects, 90
defined, 42
of one argument, 61
of two arguments, 62

common (base 10) antilogarithm,
137

common (base 10) logarithm, 137
common variables, 105
commutation, algebra, 404
compact format, of printed output,

604
comparison functions, 491

in algebraics, 492
complement, of a binary integer,

210
complex arrays

arithmetic with, 357
commands for, 357
object type number, 97

Index 827

complex numbers, 81, 156~ 168
allowed in algebraics, 161
arithmetic with, 156
arrays of, 357
as the result of real-number

operations, 163
assembling, 160, 166
changing angular modes, 157
commands, 166

compared to real numbers, 161
compared to vectors, 166, 167,

184
conjugating, 166
converting to real, 166
disassembling, 90, 160, 166
display form, 158
entering, 158
i (the imaginary number), 165
in expressions, 164
internal representation, 158
object type number, 97
printing, 604

complex to real, disassembling, 90
conditional structures

in programs, 494, 499
CONIC plot type, 327
conic plots, 329
conjugating

complex arrays, 357
complex numbers, 166
contents of a variable, 115

connected plotting, 299
constant matrix, calculating, 359
constants, symbolic, 144
consumer price index, 364
continuing program execution, 483

after error, 541
continuous memory, not affected

by (ON) / (OFF), 25
contrast, adjusting, 25
control alarms, setting, 448
control codes, printing, 607
convergence, testing a series, 424

conversion, temperature, 197
converting

binary to real, 210
complex array to real array, 357
complex to real, 90, 166
compound unit to SI base units,

196
date to number, 454
date to string, 454
degrees to radians, 142
HMS to number, 456
number to date, 454
number to HMS, 456

numbers to characters, 90
objects to a string, 554
objects to strings, 90
pixel coordinates to user-unit

coordinates, 324
radians to degrees, 142
real array to complex array, 357
real numbers to fractions, 136
real to binary, 210
real to complex, 90, 166
unit objects, 193, 194
units, 188, 195

coordinate mode, changing, 171
coordinate pairs, can be

represented by complex
numbers, 81

coordinate systems for plots, 323
correcting typing mistakes, 47
correlation, 377
cosine, 140
cotangent, creating a user-defined

function for, 151
counted strings, are counted

sequences of characters, 86
covariance, 375, 376
cross product, 176, 353
CST menu, 213

unit-object conversion in, 195

CST reserved variable
contains data for custom menus,

108, 213

CTRL menu, 483

current directory, 119
current directory path, is displayed

in status area, 48
current path, 119
cursor keys, 27
custom menus

conversion of units, 195
creating, 213
in programs, 535
menu labels, 213
shifted actions, 215

Customer Support, 656
customizing the calculator, 212-—

223
modifying the shift keys, 215
setting modes, 220
user key assignments, 216
using system flags, 222

Cylindrical mode, 170
annunciator, 170

D
darker contrast, 25
data output, 531

labeling with string commands,
532

dates
arithmetic with, 454
changing format, 442
commands, 441
converting to numbers, 454
converting to strings, 454
day/month/year date format,

442

month/day/year date format,
442

setting, 441
day/month/year date format, 442

days, between two dates, 455
debugging

programs, 483
subroutines, 486

decimal base marker, 82
decimal numbers, 82, 207
decimal places, number displayed,

58
decrementing

the program loop counter, 513
time, 443

defining
user-defined functions, 151
variables, 107

definite loops, 501
degrees, converting to radians, 142
Degrees mode, 139
delaying the print cycle, 603, 607
deleting

matrix row or column, 352
tag from tagged object, 90
user key assignments, 219

delimiters
' ' delimits algebraic objects,

85
C J delimits arrays, 83, 173, 347
« % delimits complex numbers,

81, 158
+ delimits lists, 86
* delimits programs, 86, 468

" " delimits strings, 86
: delimits tagged objects, 87

' ' prevents evaluation of a
variable, 84, 112

delimits binary integers, 82,
207, 208

= delimits equations, 129
_ delimits unit objects, 88, 187

delta days, number of days
between dates, 454

m&

dependent variable
not used for function plots, 299
plotting range for, 319
used for conic plots, 329, 333
used in statistics, 376

depth of stack, determining, 78
derivatives

in the EquationWriter
application, 233

keying into the command line,
420

plotting, 308
user-defined, 422

user-defined prefix is “der’’, 108
determinant, calculating, 359
differentiation

in one step, 421
of algebraic expressions, 419
of built-in functions, 150
of user-defined functions, 150
stepwise, 419

dimensionless units, 198
directories

concepts, 118

contained in a variable, 110
creating, 120, 123
current directory, 119
determining all variables of a

specific type in, 98
directory path, 119
HOME directory, 118
new variables are added to the

current directory, 121
object type number, 97
parent directory, 119

purging, 123
recalling, 123
searching directories for a

variable name during
evaluation, 121

switching up a level, 122
directory path, 119

is displayed in status area, 48

disassembling
complex numbers, 160, 166
objects, 90
unit objects, 206
vectors, 173, 184

disconnected plotting, 299
display

adjusting contrast, 25
clearing messages, 48
is divided into three sections, 45
Status area, 48

display modes
changing, 59
control format used to display

numbers, 57
displaying an object, from a

program, 523
distribution, algebra, 404
dividing

a variable by a stack value, 115
a vector into a matrix, 355
in the EquationWriter

application, 231
numbers, 134

do error, error trapping, 542
dot product, 176, 353
double-space printing, 606
DO...UNTIL...END program

structure, 510
dropping

the stack, 64, 71, 78

duplicate variable names, allowed
in different directories, 121

duplicating
level 1 in the stack, 65, 71

objects on the stack, 78

E
é, is a built-in constant, 144
echoing stack contents, 71
EDIT menu, 68

editing
equations in the EquationWriter

application, 240
in the command line, 75

elapsed time, calculating, 457
Engineering mode, 58
enter key, 25

duplicates level 1, 65
entry modes

for entering matrices, 351
four types, 76

environmental limits, plug-in
cards, 660

environments
Alarm Catalog, 449
are cancelled with the attention

key, 54
Equation Catalog, 258
Graphics, 286, 300

Interactive Stack, 70

Selection, 244, 398

Statistics Catalog, 371
EQ reserved variable

contains the current equation,
108, 253, 286

equal to, comparison test, 491
Equation Catalog, 253, 258

commands, 259
creating a list of equations, 274
exiting, 262
linking equations, 272
reordering, 259

equation to stack, disassembling,
90

equations
can be arguments to a function,

129
contain an sign, 129
editing in the EquationWriter

application, 242
general and principal solutions,

393
linking, 272

6¢_?

solving for a variable, 386
solving quadratics, 389
solving with the Plot application,

266
used to create a user-defined

function, 151
EquationWriter application, 24,

227-250
addition, subtraction, and

multiplication, 230
backspace editing, 241
building unit objects, 204
command line editing, 242
creating equations, 230
derivatives, 233
division and fractions, 231
editing equations, 240
editing subexpressions, 243
exponents, 232
how it is organized, 228
implicit parentheses, 229
inserting objects from the stack,

integrals, 234
keyboard operation, 229
numbers and names, 230
powers of 10, 233
replacing subexpressions, 247
Selection environment, 243
square root and x-th root, 232
summations, 235
unit objects, 235
using parentheses, 233, 236
viewing algebraics and unit

objects, 240
where function, 236

erasing PICT, 292, 323
error messages, are displayed in

status area, 48

error recovery, from accidentally
purging a variable, 115

Index 83t

errors
clearing last, 542
continuing program execution

after, 541
error message, 542
error number, 542

error trapping commands, 542
returning most recent Kermit

error, 614

trapping, 541
user-defined, 546

escape sequences, printing, 607
etcetera key

used to enter accented
characters, 53

used to enter special characters,
54

Euclidean norm, calculating, 359
evaluation

is affected by results mode, 127
of a variable, 109

of a variable containing a
program, 110

of algebraics, 125, 126
of local variables, 476, 569
of string contents, 90
of symbolic constants, 145
of variables prevented by

quoting, 84, 112
the precedence of operators

determines the order of
evaluation of terms, 128

evaluation of variables, searching
directories for the variable
name, 121

exclusive or
with binary integers, 210
with tests, 493

executing
commands and functions from

the stack, 61
programs, 472
user-defined functions, 152

832 index

expanding products and powers,
396

exponent

display format, 58
extracting from a number, 148
in the EquationWriter

application, 232
keying in, 47

exponential functions, 137
exponentials, rearrangement using

algebra, 408
expressions

do not contain an “=”, 129
using complex numbers in, 164

iF

F test, 385

factorial, 147
factoring unit expressions, 199
false, result of a test, 490
FCN menu, 308
Fibonacci numbers, 548
file names, PC versus HP 48, 628
files, sending and receiving, 614
finishing server mode, 614
finite series, 423
first order equation, solving for x,

392
Fix mode, 58
flags, 515

complete list of, 699
I/O Device, 610
Line-feed, 608
Printing Device, 610
recalling and storing, 518, 556
setting, clearing, and testing,

222, 516
that control the evaluation of

symbolic constants, 145
formal variable, does not contain

an object, 152

format
of numbers in the display, 57
of printed output, 604

FOR. ..NEXT loop, 506
FOR...STEP loop, 508
fraction approximation, of a

number, 134
fraction conversion

accuracy of result, 136
functions, 136

fraction mark, 58
fractional part, math function, 148
fractions

adding using algebra, 409
in the EquationWriter

application, 231
free memory, number of bytes of

unused user memory, 101
freeing memory, 649
freezing part of the display, 523
frequencies, in statistical samples,

374
Frobenius norm, calculating, 359
function arguments on the stack,

61
FUNCTION plot type, 327
function plots, 328
functions

analyzing in the Graphics
environment, 306

angle conversion, 142
are a subset of commands, 42
as objects, 90
built-in, 150
creating user-defined functions,

151
defined, 42
math, 132-149
on the keyboard, 134-135
plotting, 328
user-defined, 150
using equations as arguments,

129

using symbolic arguments, 149
future date, calculating, 455

G
general solutions, of an equation,

393
geometric series, 424
getting files, input/output, 614
getting the n-th array element, 90
global names, object type number,

97
global variables, 105
Grads mode, 139

annunciator, 48
Graphics environment, 300

adding graphical elements to
PICT in, 337

analyzing p'~tted functions in,
306

introduced, 286

stack-related operations, 3412
zoom operations in, 304

GRAPHICS FCN menu, 308

graphics objects
in programs, 342
introduced, 287
manipulating on the stack, 342
object type number, 97
printing, 606, 610
size, 90
stack form, 340
store pictures, 87

GRAPHICS ZOOM menu, 305

greater than, comparison function,
491

greater than or equal to,
comparison function, 491

greatest integer, math function,
148

Greek letters, entering from the
keyboard, 50

index $33

H
halt annunciator, 48
halting

programs with the attention key,
54

programs with the HALT
command, 483, 523

the root-finder, 277
hexadecimal base marker, 82
hexadecimal numbers, 82, 207
hidden variables, showing, 394
histogram plot

from Plot application, 336
from Statistics application, 378,

382
HMS format, 456

HOME, is power-on directory, 48
HOME directory, 118, 124

selecting, 122
HP Solve application, 24, 250-282

choosing guesses, 266
consists of two menus, 253
customizing the SOLVR menu,

269
editing equations, 256
entering a new equation, 257
finding solutions of programs,

275
how it works, 276
interpreting results, 279
multiple solutions, 266
no solution found, 282

plotting solutions, 266
recalling equations, 256
sign reversal, 280
solving equations, 254, 256
solving expressions, 254
solving programs, 254
specifying an equation from the

Equation Catalog, 258
specifying the current equation,

255

834 Index

storing equations, 256
used with Plot application, 252
using unit objects with, 267
verifying solutions, 265

humidity, effect on calculator, 660
HYP menu, 137

hyperbolic cosine, 137
hyperbolic functions, 137
hyperbolic sine, 137
hyperbolic tangent, 137

i (the imaginary number), 144, 165
ideal gas equation, 185
identity matrix, calculating, 359
IFERR...THEN...ELSE...END

error trap for programs, 544
IFERR...THEN...END error

trap for programs, 542
IFT if-then-end function, 499
IFTE if-then-else function, 500
IF. ..THEN...ELSE...END

structure for programs, 496
IF...THEN...END structure for

programs, 494
imaginary part, 166

of a complex array, 357
immediate execution of variables,

112
Immediate-entry mode, 76

entering unit objects, 188
incrementing

the program loop counter, 513
time, 443

indefinite loops, 510
independent memory, 642
independent variable

plotting range for, 319
specifying for plots, 294
statistics, 376

Infrared Printer, 602, 609
character sets, 607, 609
testing, 670

Infrared Transmission mode, 617
input

options, 526
prompting for data input, 524

input/output, 612-634
Binary/ASCII modes, 629
cable connection, 621
commands for, 614
downloading data, 612
HP 48 to HP 48, 613, 619
Kermit file transfer protocol,

612
local/local configuration, 620
local/server configuration, 620
PC to HP 48, 621, 623
serial commands for, 632

serial loop back test, 671
setting I/O parameters, 617
translating character codes, 626
types of data allowed, 613

inserting, matrix row or column,
351

insufficient memory, error
message, 103

integer part, math function, 148
integrals

in the EquationWriter
application, 234

keying into command line, 428
integrand, approximation, 431
integration

accuracy factor, 433
from the stack, 436
how the HP 48 does it, 429
numerical, 432

symbolic, 428
interactive programs, 519-540

beeping, 522
building a temporary menu, 539

building the command-line
string, 528

displaying a built-in menu, 534
displaying objects, 523
freezing part of the display, 523
halting programs, 523
labeling program output, 531
options for the input command,

526
prompting for data input, 524
prompting for input, 520
returning a key location, 539
using custom menus, 535
using string commands to label

data output, 532
using tagged objects as data

output, 531
Interactive Stack, 70-75

activating, 70
exiting, 74
operations, 71
viewing objects in, 73

internal representation
binary integers, 208
vectors, 171

International System of Units (SI),
187

inverse
of a matrix, 354
of a number, 134
of a variable, 115

inverse hyperbolic cosine, 137
inverse hyperbolic sine, 137
inverse hyperbolic tangent, 137
I/O Device flag, 610
I/O menu, 614, 632
I/O SETUP menu, 617
IOPAR reserved variable

stores I/O parameters, 108, 618
isolating a variable, algebra, 389
iterative refinement, solving

systems of equations, 362

Index 835

J

Joe’s grocery, 596

K
keeping the stack, 71
Kermit file transfer protocol, 612
Kermit modes, server /local, 616
Kermit protocol commands, 614
key assignments, user keyboard,

217
key location, returning, 539
keyboard

blue keys, 50
clearing key assignments, 219
entering letters, 52
entering special characters, 54
Greek letters, 50

has six levels, 25, 50
keying in a program, 470
keying in accented characters,

53
keying in dates, 441
keying in delimiters, 55
keying in numbers, 47
keying in statistics data, 369
keying in time, 442
keying in vectors, 172
lowercase letters, 50, 52
number pad, 50
orange keys, 50
queues 15 keystrokes, 48
redefining, 216
shift keys, 52
special characters, 50
uppercase letters, 50, 52
using backspace to erase

mistakes, 47
keyboard functions, 134-135
keyboard layout, 26
keystroke queue, 48

L
labeling

data output with string
commands, 532

plot axes, 320
program output, 531

largest real number, 81
last argument

restores arguments after
insufficient memory
condition, 103

used to recover purged variable,
115

last argument key, 64
last command key, 77
last menu key, 57
left-shift annunciator, 48, 52
left-shift key, 52

activates left-shift keyboard, 25
length, of a vector, 353
less than, comparison function,

491

less than or equal to, comparison
function, 491

letters
entering, 52
generating accents, 53
lowercase, 52

uppercase, 52
levels of the stack, 46

returning current level number,
71

library commands, 653
LIBRARY menu, 651
library objects, 651

attaching to a directory, 651
contain commands and

operations, 89
object type number, 97

lighter contrast, 25
line, drawing, 337
line length, during printing, 610

line termination, during printing,
610

linear equations, 357
accuracy of solution, 362

linear regression, 377
line-feed, dumping the print

buffer, 603
Line-feed flag, 608
linking equations in the Equation

Catalog, 272
listing the stack, creates a list of

objects, 71
lists

are sequences of objects, 86
assembling, 90
creating a subset, 90
mode for keying in, 77
number of elements (size), 90
object type number, 97
position of an object in, 90
put replaces n-th element, 90
replace a sub-list, 90

Local mode, 616
local names, object type number,

97
local variables, 105

evaluation, 476
scope of definition, 476
used in programs, 473

local /local configuration
HP 48 to HP 48, 620

PC to HP 48, 623
local/server configuration
HP 48 to HP 48, 620

PC to HP 48, 624
logarithmic functions, 137
logic commands, 210
logical functions, 493

in algebraics, 493
loops, 501

decrement loop counter, 513
DO...UNTIL. ..END, 510
FOR...NEXT, 506

FOR. ..STEP, 508
increment loop counter, 513
START. ..NEXT, 501
START. ..STEP, 504
WHILE. ..REPEAT...END,

511
low battery (alert) annunciator, 48
low memory, 102, 103
low-battery condition, replacing

batteries, 660
lowercase alpha lock, 53
lowercase letters, 50, 52

magnitude, of complex numbers,
157

mantissa
display format, 58
extracting from a number, 148
keying in, 47

mark, defines a position in PICT,
302

math functions, 132-149
with vectors, 177

MATR menu, 359

matrices, 83
adding and subtracting, 354
are arrays, 345
arithmetic with vectors, 355
commands for, 359
complex, 357
determinant of, 359
dividing by a vector, 355
editing, 350
identity, 359
keying in, 346
norms of, 359
product of, 354
put replaces n-th element, 90
reciprocal, 354
redimensioning, 359

index 837

scalar multiplication, 354
transposing, 359

MATRIX menu, 346

MatrixWriter application, 346
deleting row or column, 351
entering arrays, 350
entering statistical data, 370
entry modes for entering

matrices, 351

inserting row or column, 351
maximum, math function, 148
maximum value, of a sample, 374
MAXR, is a built-in constant, 144
mean, of a sample, 374
median

of a list, 563
of statistics data, 560

memory
amount used by objects, 101
archiving, 624, 648
backing up, 624
cancelling clearing operation,

102

checksum of an object, 101
clearing, 101, 102
expanding, 100
freeing merged memory, 649
insufficient memory, 103
low-memory conditions, 102
no room for last stack, 102

no room to show stack, 103

not affected by / (OFF), 25
number of bytes unused, 101
out of memory, 103
RAM and ROM, 100, 635
restoring backed up user

memory, 625
MEMORY Arithmetic menu, 115
MEMORY menu, 101

menu descriptions
ALGEBRA, 389, 395
CST, 213
EDIT, 68

GRAPHICS FCN, 308
GRAPHICS ZOOM, 305
I/O, 614, 632
I/O SETUP, 617
LIBRARY, 651

MATRIKX, 347
MEMORY, 101
MEMORY Arithmetic, 115
MODES, 57
MODES Customization, 220
MTH, 133
MTH BASE, 82, 208, 210
MTH HYP, 137
MTH MATR, 359
MTH PARTS, 138
MTH PROB, 147, 383
MTH VECTR, 142, 172, 183
PLOT, 290
PLOTR, 292
PRG BRCH, 494, 501
PRG CTRL, 483
PRG OBJ, 90
PRG STK, 78
PRG TEST, 491
PRINT, 603
SOLVE, 253, 256
SOLVE SOLVR, 253, 263
STAT, 367
STAT MODL, 376
TIME, 440
TIME ADIJST, 443
TIME ALRM, 444
TIME RPT, 445
TIME SET, 441
UNITS Catalog, 187, 188, 193
UNITS Command, 187
VAR, 106, 112, 118

menu keys, 55
menu labels

bar indicates a directory, 118
describe menu keys, 45, 55
in custom menus, 213

variable names, 106, 108

menus
bar indicates sub-menu, 56
cycling multiple pages, 56
define menu keys, 55
leaving, 56
selecting, 56
selecting next and previous, 56
switching to last menu, 57
used in programs, 534

merged memory, 642
messages, 677 - 693

are displayed in status area, 48
clearing from the display, 48
share “territory” with

annunciators, 48
minimum, math function, 148
minimum value, of a sample, 374
MINR, is a built-in constant, 144
mod (modulo), math function, 148
mode, changing, 77
mode types

Algebraic-entry, 76, 190
Algebraic/Program-entry, 77
Alpha-entry, 52, 53, 222
ASCII Transmission, 617, 629
Automatic Alpha Lock, 222
Binary Transmission, 617, 629
Cylindrical, 170
Degrees, 139
Engineering, 58
Fix, 58
Grads, 139

Immediate-entry, 76
Infrared Transmission, 617
Local, 616
Numerical Results, 127, 144
Polar, 81, 157, 170
Program-entry, 77, 470
Radians, 139
Rectangular, 81, 157, 170

Scientific, 58
Server, 614, 616
Spherical, 170

Standard, 58
Symbolic Evaluation, 223
Symbolic Results, 127, 144
User, 216, 223

Wire Transmission, 617
model, in Statistics application,

376
modes

changing, 554
changing coordinate mode, 171
for printing, 607
reset by clearing memory, 101
selecting, 220
setting, 57
using system flags to set, 222

MODES Customization menu,
220

MODES menu, 57

modes of entry, four types, 76
MODL menu, 376

month/day/year date format, 442
most significant bits, binary

integers, 208
moving, the stack pointer, 71
moving terms, algebra, 402
MTH BASE menu, 82, 208, 210
MTH HYP menu, 137
MTH MATR menu, 359

MTH menu, 133

MTH PARTS menu, 138
MTH PROB menu, 147, 384
MTH VECTR menu, 142, 171,

183
multiline format, of printed

output, 604
multiplying

a variable by a stack value, 115
in the EquationWriter

application, 230
numbers, 134

index 839

names
are used to identify variables, 84
contained in a variable, 110
in the EquationWriter

application, 230
reviewing unit names, 191

naming variables, 108
natural (base e) antilogarithm, 137
natural (base e) logarithm, 137
negating

complex numbers, 166
contents of a variable, 115

negative numbers, keying in, 47
nested loops, 561
nested parentheses, in algebraics,

128
nesting, user-defined functions,

153
next key, selects next menu, 56
no room for last stack, error

message, 102
no room to show stack, error

message, 103
normal distribution, 385
not

with binary integers, 210
with tests, 493

number pad, of the keyboard, 50
numbers

converting to a character, 90
converting to date, 454
display modes, 57
in the EquationWriter

application, 230
internal representation, 57
keying into the command line,

47
numerator, in the EquationWriter

application, 229
numerical constants, 144
numerical integration, 432

840 index

accuracy factor, 433
Numerical Results mode, 127, 144
numerical value of a character, 90

O
OBJ menu, 90

object to string, converting, 90
object type number, 97

determining, 97
object types, 80, 97

arrays, 83
backup objects, 89
binary integers, 82
built-in commands, 90
built-in functions, 90
complex numbers, 81
counted strings, 86
directories, 89

graphics objects, 87
library objects, 89
lists, 86
matrices, 83

names, 84

programs, 85
real numbers, 81
strings, 86
tagged objects, 87
unit objects, 88
vectors, 83

XLIB names, 89
objects

are delimited by punctuation
characters, 55

checksum, 101
disassembling, 90
inserting from the stack into the

EquationWriter application,
246

manipulation commands for, 90
viewing and editing, 66, 67
viewing in the Interactive Stack,

73

octal base marker, 82
octal numbers, 82, 207
off key, 25
on key, 25

becomes the attention key, 54
one-argument commands, 61
one-dimensional vectors, 83
opening serial port, 614
operations, defined, 42
or

with binary integers, 210
with tests, 493

orange keys, 25, 50
out of memory, 103
output, 531
over-determined systems, 363
overflow, real numbers, 81

p

a, is a built-in constant, 144
pacing (receive/transmit), setting,

619
packet, sending commands to a

server, 614

packets, sending commands to a
server, 631

paired-sample statistics, 375
PARAMETRIC plot type, 327
parametric plots, 331
parent directory, 119
parentheses

are highest precedence in
algebraics, 128

delimit complex numbers, 81
used in algebra, 403
used to enter complex numbers,

158
using in the EquationWriter

application, 229, 233, 236

parity
during printing, 610
setting, 617, 619

PARTS menu, 138

past due alarms, 447
path, returning current directory

path, 120
PC file names versus HP 48 file

names, 628

PC to HP 48
cable connection, 621
Input/Output, 621

percent calculations, with unit
objects, 202

percent change, calculating, 138
percent of total, calculating, 138
period, as fraction mark, 58
permutations, calculating, 147
photometric units, 198
pi, 140
picking an object from stack, 78
picking stack contents, 71
PICT

adding graphical elements to,
336

changing the size of, 325
erasing, 292
erasing and restoring to its

default size, 323
stack manipulation of, 341

pixel coordinates in plots, 323
plane angles, 198
Plot application, 24, 283-344

contains two menus and special
environment, 286

data elements in, 286
structure of, 286
used with HP Solve application,

252
PLOT menu, 290
PLOT PLOTR menu, 292
plot types, 327
BAR, 329, 336
CONIC, 327, 328
FUNCTION, 328, 329
HISTOGRAM, 328, 336

index 841

PARAMETRIC, 327, 333
POLAR, 327, 330
SCATTER, 328, 336
TRUTH, 327, 333

plotting
analyzing plotted functions, 307
axes labels and intersection, 320
conic plots, 329
connected and disconnected

plotting, 300
coordinate systems for, 324
function plots, 328
how DRAW plots points, 298
paired-sample statistics, 375
parameters stored in PPAR, 322
parametric plots, 332
plotting range of independent

and dependent variables,
320

polar plots, 331
programs and user-defined

functions, 335
refinement options for, 318
resetting plot parameters, 292
resetting plot parameters and

erasing PICT, 323
resolution, 321
single-sample statistics, 374
size of PICT, changing, 325
specifying independent variable,

294
specifying plot parameters, 291
specifying the center and scale,

295
statistical data from the Plot

application, 335
statistics, 379
status message indicates plot

parameters, 291
the derivative of a plotted

function, 308
truth plots, 333

842 index

two or more equations, 300
unit objects in, 335
user-unit and pixel coordinates,

323
what the HP 48 can plot, 283
with autoscaling, 295
with specified y-axis range, 295
working with difficult plots, 314
x-axis display range, 295
y-axis display range, 295
zoom operations, 304
zoom-to-box, 306
zoom-to-box with autoscaling,

306
plotting range

specifying, 319
valuable for parametric and

truth plots, 321
plug-in cards, 635

environmental limits, 660
installing and removing, 636

plug-in RAM, 100
plug-in RAM batteries, 661
plug-in ROM, 100
polar angle, 166
Polar mode, 81, 157, 170

annunciator, 157, 170
POLAR plot type, 328
polar plots, 331
Polar /Cylindrical Coordinates

mode, annunciator, 48
Polar /Spherical Coordinates

mode, annunciator, 48
population statistics, 375
port RAM test, 669
position of object in list, 90
power conservation, automatic off

after 10 minutes, 25
power-on directory, is HOME, 48
powers of 10, in the

EquationWriter application,
233

PPAR reserved variable
contains Plot parameters, 108,

321

precedence of functions
in algebraics, 128
in unit objects, 191

precision, of displayed number, 58
predicted value, 376
prefixing user-defined units, 206
previous key

right-shift goes to first page, 56
selects previous menu, 56

previous results, used in chain
calculations, 62

PRG BRCH menu, 494, 501

PRG CTRL menu, 483

PRG OBJ menu, 90
PRG STK menu, 78

PRG TEST menu, 491

primary (unshifted) keyboard, 25,
50

principal solutions, of an equation,
393

PRINT menu, 603
printing

accumulating data in the buffer,
608

and the HP 48 character set, 607
double spacing, 606
escape sequences and control

sequences, 607
graphics objects, 606, 610
modes, 607
PRTPAR contains printer

parameters, 610
setting the delay, 607
strings, 606
testing, 670
the display, 605
the stack, 606
to the serial port, 609
variables, 606

Printing Device flag, 610

printing, 602~611
PROB menu, 147, 383
probability, 147
producer price index, 364
product of matrices, 354
products and powers, expanding,

396
program execution, continuing

after error, 541
program-entry annunciator, 470
Program-entry mode, 77, 470

annunciator, 48
entering unit objects, 188

programming examples, 547-599
programs

aborting with the attention key,
54

are sequences of commands, 835,
468

as arguments, 569
calculating execution time, 551
CASE. ..END structure, 497

compared to algebraics, 125
conditional structures, 494
continuing execution, 483
data input commands for, 520
DO...UNTIL...END structure,

510

editing, 472
evaluating variables containing

programs, 110

evaluation of local names, 476
executing, 472
finding solution with the HP

Solve application, 275
FOR...NEXT structure, 506

FOR... .STEP structure, 508

halting, 483
IF. ..THEN...ELSE. ..END

structure, 496

IF. ..THEN...END structure,

494
input/output, 519

index 843

keying in, 470
loop structures, 501
mode for keying in, 77
object type number, 97
plotting, 334
scope of local variables, 476
single-step execution, 483
START. ..NEXT structure, 501

START. ..STEP structure, 504

suspending execution with the
WAIT command, 534

that act like user-defined
functions, 478

that manipulate data on the
stack, 479

used by other programs, 582
using alarms in, 453
using custom menus in, 535
using local variables in, 473
using subroutines in, 480
using tests in, 490
WHILE. ..REPEAT...END

structure, 511

working with graphics objects,
342

prompting for input, 520
PRTPAR reserved variable

contains printer parameters, 610
contains printing parameters,

108
pseudo-random number, 147
punctuation characters, as

delimiters, 55

purging
alarms, 450

backup objects, 646
directories, 123

objects when out of memory,
103

variables, 114
put element into array, 90

844 Index

Q
quadratic equations

solving, 389, 390
queued keystrokes, 48
quotes, used to prevent evaluation

of a variable, 112

radians, converting to degrees, 142
Radians mode, 139

annunciator, 48
radix mark. See fraction mark
RAM

also known as user memory, 100
can be expanded with plug-in

cards, 100

memory which can be altered,
100

(random-access memory), 635
RAM cards, 638

batteries, 638
expanding user memory, 643
installing and removing, 636
used for backup, 644
write-protect switch, 641

random number, selecting, 147
range of values, real numbers, 81
real arrays, object type number, 97
real numbers, 81

compared to complex, 161
converting to complex, 166
converting to fractions, 136
display format, 58
MAXR and MINR, 144
object type number, 97
overflow, 81
range of values, 81
underflow, 81

real part
of a complex array, 357
of a complex number, 166

real to complex, assembling, 90

rearranging terms, the Rules
transformations, 397

recalling
contents of a variable, 110
flags, 518
user key assignments, 220

receive pacing, setting, 619
receiving data, serial I/O, 614
receiving strings, serial I/O, 632
reciprocal, of a unit object, 201
recover memory, cancelling

clearing operation, 102
recovering

last arguments, 64
previous command lines, 77

Rectangular mode, 81, 157, 170
annunciator, 158

recursion, calculating Fibonacci
numbers, 548

redefining the keyboard, 216
redimensioning a matrix, 359
registers, variables used instead of,

105

regulatory information, 676
reordering

Equation Catalog, 259
Statistics Catalog, 371
the VAR menu, 113

repair, 674
replace part of a list or string, 90
replacing batteries, 660
rescheduling alarms, 447
reserved variables, 108
resetting

memory, 101
plot parameters, 292, 323

resolution
how it affects statistical plots,

321
specifying for plots, 320
speeding up plots by increasing,

321

restoring backed up user memory,
625

results, on the stack, 61
Review Catalog, 112
right-shift annunciator, 48, 52
right-shift key, 52

activates right-shift keyboard, 25
right-shift keyboard, 50
rolling the stack, 71, 78
ROM

can be expanded with plug-in
cards, 100

memory which cannot be
altered, 100

(read-only memory), 635
ROM cards, installing and

removing, 636
root

finding the square or x-th root
of a number, 134

of a plotted function, 308
root-finder

halting, 277
in the HP Solve application, 276
intermediate guesses, 278
using initial guesses, 277

rotate commands, with binary
integers, 210

rotating the stack, 78
rounding errors, solving systems of

equations, 361
rounding numbers, 148
row norm, calculating, 359
RPT menu, 445

rules of precedence, in algebraics,
128

Rules transformations, 397 ~—417
examples, 400
executing a transformation, 399
exiting a RULES menu, 400
selecting, 399

Index 845

Ss
sample statistics, 374
scalar multiplication, matrices, 354
scaling a plot, 295
scatter plot

from Plot application, 336
from Statistics application, 378

Scientific mode, 58
scientific numbers, keying in

exponent and mantissa, 47
scope of local variables, 105, 476
scrolling

of the command line, 46
the stack, 66

DAT reserved variable
contains current statistical

matrix, 108, 369

seed for random number, 147
Selection environment, 243, 398

editing subexpressions, 244
self-test, 667
sending a serial break, 632
sending data, serial I/O, 614
separating variable names by type,

serial cable, PC to HP 48, 621
serial I/O commands, 632
serial loop-back test, 671
serial port

configuring for printing, 610
opening and closing, 614
printing, 609

Server mode, 614, 616
starting and finishing, 614

Service, 674

testing calculator operation, 665
SET menu, 441
setting

display I/O parameters, 614
flags, 222
serial I/O timeout, 632

SETUP menu, 617

846 Index

shift commands, with binary
integers, 210

shift keys, 25, 52
in custom menus, 215
press twice to cancel, 52

short-interval repeating alarms,
LAS

showing hidden variables, 394
sign

changing the sign of a number,
47

determining, 148
of a unit object, 203

significant digits, 58
simplification of algebraics, 128
sine, 140
single-sample statistics, 374
single-step

execution of a program, 483
program operations, 483

Size
of a graphics object, 90
of a list or string, 90
of an array (dimension), 90
of PICT, 325

slope, of a plotted function, 308
smallest integer, math function,

148
smallest real number, 81

Snedecor’s F test, 384
solid angles, 198
SOLVE menu, 253, 256
SOLVE SOLVR menu, 263

Solver-list, naming, 270
solving

for a variable, 388
quadratic equations, 389, 390
systems of equations, 356

SOLVR menu, 253, 263

customizing, 269
UPAR reserved variable

contains Statistical parameters,
108, 378

special characters
entering from the keyboard, SO
table of, 54

Spherical mode, 170
square matrix, inverting, 354
square root

in the EquationWriter
application, 232

of a number, 134
squaring a number, 134
stack

clearing, 64
commands, 78
dropping, 64
duplicating level 1, 65
Graphics environment

operations, 341
inserting level 1 into the

EquationWriter application,
246

is a sequence of storage
locations, 46, 60

levels, 46
lost after recovering memory,

102
no room to show, 103
one-argument commands, 61
ordinary calculations, 61
printing, 606
recovering last arguments, 64
splitting equations, 90
stores graphics objects, 87
swapping levels 1 and 2, 63
two-argument commands, 62
using previous results, 62
viewing and editing objects, 67
viewing and editing variables, 67

stack display, is divided into three
sections, 45

stack pointer, moving, 71
stack to array, assembling, 90
stack to list, assembling, 90
stack to tag, assembling, 90

stack to unit, assembling, 90
standard deviation, 374, 375
Standard mode, 58

START... .NEXT definite loops,
501

START. ..STEP definite loops,
504

STAT menu, 367

STAT MODL menu, 376
statistics

dependent variable, 376
designating the current matrix,

369
editing data, 370
entering data, 368, 369
independent variable, 376
manipulating data, 368
paired-sample statistics, 375
plotting samples, 378
population statistics, 375
sample statistics, 374
summation commands, 383

Statistics Catalog, 370
operations, 371
reordering, 371

statistics, 364-385
status area

displays current path, 119
of the display, 48

stepwise differentiation, 419
STK menu, 78

storage locations
the stack, 46, 60

storing

flags, 518
user keys, 217
variables, 107

strings
are sequences of characters, 86
combining, 90
counted strings, 86
executing contents of, 90
from an object, 90

Index 847

making a subset, 90
number of characters (size), 90
object type number, 97
position within another string,

90
printing, 604, 606
replacing a sub-list, 90

Student’s t test, 384
subdirectories, 118

can be manipulated like other
variables, 124

creating, 120
evaluating its name to switch to

it, 122
subexpressions

completed with cursor keys in
the EquationWriter
application, 229

defined, 243, 395
editing in the EquationWriter

application, 243
replacing in the EquationWriter

application, 247
the Selection environment, 398

subroutines, 480
single-step execution, 486

subset of a list or string, 90
subtracting

a stack value from variable, 115
in the EquationWriter

application, 230
numbers, 134

summation statistics, 383
summations, 423

calculated from the stack, 426
entering, 423
in the EquationWriter

application, 235
suspending a program, 534
swapping levels in the stack, 63
switching to the parent or HOME

directory, 122

848 index

symbolic arguments, used in
functions, 149

symbolic constants, 144
converting to values, 144
e, 144

evaluation, 145
i (the imaginary number), 144,

165
x, 140, 144

Symbolic Evaluation mode, 223
symbolic integration, 428
symbolic math, 24
Symbolic Results mode, 127, 144
syntax

of an integral, 428
of variable names, 108
unit objects, 187
user-defined function, 154

system flags, 222, 515
complete list of, 699

systems of equations, 356
accuracy of solution, 361
over-determined, 362
under-determined, 362

T
t test, 384

tagged objects
are labeled objects, 87
as data output, 531
assembling from the stack, 90
deleting the tag, 90
disassembling, 90
object type number, 97
useful for labeling, 88

tangent, 140
Taylor’s polynomials

approximation of the integrand,
431

computing for an algebraic, 426
translating point of evaluation,

427

temperature, effect on calculator,
660

temperature conversion, 197
temporary menu, used in

interactive programs, 539
temporary variables, 105

used in programs, 473
TEST menu, 491

test statistics, 383
testing

calculator operation, 665
flags, 222, 516
Infrared Printer, 670
keyboard operation, 667
port RAM test, 669
self-test, 667
serial loop back test, 671

text, entering and editing in the
command line, 46

ticks, 457
system time as a binary integer,

456
time

adjusting, 443
am/pm time format, 442
changing format, 442
commands, 441
required to execute a program,

551
setting, 442
twelve-hour time format, 442
twenty-four hour time format,

442
TIME ADJST menu, 443

TIME ALRM menu, 444

time arithmetic, 456
TIME menu, 440

TIME RPT menu, 445

TIME SET menu, 441

timeout
automatic off after 10 minutes,

25
setting, 632

total, of a sample, 374
translating characters,

input /output, 626
translating input/output, 617
translation mode, during printing,

610
transmit pacing

during printing, 610
setting, 619

transmitting, serial I/O, 632
transmitting annunciator, 48
transpose, calculating, 359
trigonometric functions, 140

expanding using algebra, 409
trigonometric operations, with unit

objects, 203
true, result of a test, 490
truncating numbers, 148
TRUTH plot type, 327
truth plots, 333
twelve-hour time format, 442
twenty-four hour time format, 442
two-dimensional points, can be

represented complex
numbers, 81

two-dimensional vectors, 83

returning object type number,
97, 493

U
under-determined systems, 363
underflow, real numbers, 81
unemployment rate, 364
unit objects

are numbers combined with
unit, 88

assembling from the stack, 90
disassembling, 90
in custom menus, 213
in HP Solve application, 267

Index 9849

in the EquationWriter
application, 235

object type number, 97
plotting with, 335
syntax, 187
viewing in the EquationWriter

application, 240
unit vector, 176

for complex numbers, 166
Units application, 24, 185-206

arithmetic operations, 203
assembling unit objects, 206
building unit objects using the

EquationWriter application,
204

built-in units, 193
comparing unit objects, 202
conversion to SI base units, 196
creating unit objects, 188
creating unit objects in the

command line, 190
dimensionless units of angle,

198
disassembling unit objects, 206
entering and editing unit

objects, 188
factoring expressions, 199
ideal gas equation, 185
International System of Units

(SI), 187
percent calculations, 202
photometric units, 198
powers of ten prefixes, 192
precedence of functions, 191
prefixing user-defined units, 206
raising a unit object to a power,

201
reciprocal of a unit object, 201
reviewing unit names, 191
temperature conversion, 197
trigonometric operations, 203
unit conversion, 188
unit object arithmetic, 200

850 index

unit object conversion, 194
unit object conversion in the

CST menu, 195

unit-object conversion, 193
UNITS Catalog menu, 187, 188
user-defined units, 205
using unit objects in algebraics,

191

UNITS Catalog menu, 187, 188,
193

UNITS Command menu, 187
units of angle, 198
unused memory (free memory),

101

up one directory, 122
upper tail probabilities, 384
uppercase letters, 50, 52
user flags, 515
user flags annunciator, 48
user keyboard, 216

clearing key assignments, 219
customizing operations, 220
editing key assignments, 220
making key assignments, 217
reactivating a key, 219

user keyboard active annunciator,
48

user memory, 100
User mode, 216, 223
user-defined derivatives, 422

are prefixed by “der”, 108
user-defined errors, 546
user-defined functions, 150-155

are actually programs, 154
compared to built-in functions,

150
creating, 151
executing, 152
nesting, 153
plotting, 334

user-defined menus, 213
user-defined transformations, 414
user-defined units, 205

user-key assignments, lost after
recovering memory, 102

user-unit coordinates in plots, 323

V
value of symbolic constants, 144
VAR menu, 106, 112, 118

reordering, 113
variable, menu labels give name,

108
variables, 105 — 117

are named storage locations,
105

arithmetic with, 115
can store directories, 118
changing the contents of a

variable, 111
common variables, 105
containing a directory object,

123
creating, 106, 107
defining, 107
duplicate names, 121
error recovery from accidentally

purging, 115
evaluating a variable’s name,

109
evaluating variables containing

programs, 110
global variables, 105
immediate execution, 112

in custom menus, 213
in other directories, 121
local variables, 105
memory used by, 101
menu labels, 106
names, 84, 108

new variables are added to the
current directory, 121

printing, 606
purging, 114

purging all variables in a
directory, 115

recalling contents, 110
reordering the VAR menu, 113
reserved variables, 108
returning object type number of

object stored in a variable,
97

Review Catalog, 112
scope of local variables, 105
searching for variable name

during evaluation, 121
separating variable names by

object type, 98
stored in variables, 394
storing, 107
temporary variables, 105
that contain directories, 110
that contain names, 110
using global variables, 106
using its contents, 109
using quoted versus unquoted

variable names, 112
viewing and editing, 67

vectors, 83, 170-185

absolute value, 176
are arrays, 345
arithmetic with, 353
arithmetic with matrices, 355
assembling, 173, 183
calculations, 176

commands, 183
compared to complex numbers,

166, 167, 184
complex, 357
cross product, 176, 353
disassembling, 173, 183
display modes, 350
dividing into a matrix, 355
dot product, 176, 353
getting the n-th vector element,

how they are displayed, 170

Index 851

internal representation, 171
keying in, 172
length, 353
put replaces n-th element, 90
unit vector, 176

VECTR menu, 142, 171, 183
viewing stack contents, 71

WwW
wait

suspending program execution,
534

using the argument 0, 539
Warranty, 673
where function, 416

in the EquationWriter
application, 236

WHILE. ..REPEAT. . .END, 511

wildcards, with backup objects,
646

Wire Transmission mode, 617
word, certain operations use the

concept of, 68
wordsize, binary integers, 207
write-protect switch

in RAM cards, 641
installing plug-in cards, 636

X
x-axis display range, specifying,

295
XLIB names

are objects provided by plug-in
cards, 89

object type number, 97
XON/XOFF handshaking, during

printing, 610
XON/XOFF pacing, 619
xor

with binary integers, 210
with tests, 493

852 index

x? test, 384
x-th root, in the EquationWriter

application, 232

Y
y-axis display range, specifying,

295

Z
ZOOM menu, 305

zoom operations, 304
zoom-to-box, 306

zoom-to-box with autoscaling, 306

Contacting Hewlett-Packard

For Information About Using the Calculator. If you have
questions about how to use the calculator, first check the table of
contents, the index, and “Answers to Common Questions" in
appendix A. If you can’t find an answer in the manual, you can contact
the Calculator Support department:

Hewlett-Packard
Calculator Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m. to 3:00 p.m. Pacific time

Monday through Friday

For Service. If your calculator doesn’t seem to work properly, refer
to appendix A for diagnostic instructions and information on obtaining
service. If you are in the United States and your calculator requires
service, mail it to the Corvallis Service Center:

Hewlett-Packard

Corvallis Service Center

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.
(503) 757-2002

If you are outside the United States, refer to appendix A for
information on locating the nearest service center.

HP Calculator Bulletin Board System. The Bulletin Board
provides for the exchange of software and information between HP
calculator users, developers, and distributors. It operates at
300/1200/2400 baud, full duplex, no parity, 8 bits, 1 stop bit. The
telephone number 1s (503) 750-4448. The Bulletin Board is a free
service — you pay for only the long-distance telephone charge.

Contents

Part 4:

Page 468

488

501

515

519

541

547

Part 5:

602

612

635

656

677

694

697

699

707

823

Programming

25: Programming Fundamentals

26: Tests and Conditional Structures

27: Loop Structures

28: Flags

29: Interactive Programs

30: Error Trapping

31: More Programming Examples

Printing, Data Transfer, and Plug-Ins

32: Printing

33: Transferring Data to and from the HP 48

34: Using Plug-in Cards and Libraries

Appendixes and Indexes

A: Support, Batteries, and Service

B: Messages

C: HP 48 Character Codes

D: Menu Numbers and Menu Maps

E: Listing of HP 48 System Flags

Operation Index

Index

C4} packann
Reorder Number

00048-90003

00048-90078 English

Printed in Canada 7/90

